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ELASTIC CYLINDER WITH MICROSTRUCTURE

V. Novacek, R. Cimrman, J. Rosenberg

Summary: This paper is concerned with the modelling of a microstretch elas-
tic solids. In contrast to the classical theory of continuum, the points of the mi-
crostretch material can also rotate and deform independently of their translations.
The microstructure is thus characterized by the additional degrees of freedom. Th
analytical solution for the problem of extension for a homogeneous and isotropic
microstretch cylinder is known. It is compared to the results of numerical simula-
tions using finite element method.

1. Introduction

Standard continuum mechanics studies the problems in which the microstructure is

enized by phenomenological averages. Functions that characterize continuum varia
guantities are assumed to be smooth a continuous in space and time. Distributions of
strains and other quantities and the material itself within an infinitesimal material neig
hood of a typical particle (or material element) are regarded as essentially uniform. Hc
the microscale, often very complicated, is not uniform in general. Framework of the st
continuum mechanics does not respect in principle the inner material structure. Classit
ticity becomes inaccurate when the length scales of structure constituents become cor
to some intrinsic characteristic length scale of the material. Various approaches are
to cope this problem, e.g. homogenization, higher grade theories and higher order t
Microcontinuum theory belongs among the last mentioned.

The general idea of the microcontinual approach is based on the introduction of sc
ditional fields (degrees of freedom) that characterize the behaviour of the microstructu
particular case is the micromorphic model introduced and studied e.g. in Capriz [1989
gen [1999]. In the case of micromorphic continuum, each point of the continuum can tre
rotate and deform. In Eringen [1999], each point is associated with a triple of vectors,
called directors, that can rotate and deform; they characterize the intrinsic deformatiol
microstructure. In Capriz [1989], an order parameters’ manifold is associated with the
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This manifold is a space of second order tensors with positive determinant in the case¢
cromorphic continuum. Both approaches are formally identical. Microstretch contint
a subset of the micromorphic one, where the points can rotate and deform uniformly (c
and/or stretch) without microshear. Porous and granular materials and biological tissues
descibed with this model. The points of micropolar continuum can rotate without deforn
It is a convenient description for polar materials such as liquid crystals.

This paper deals with the modelling of the microstretch lineraly elastic cylinder. The a
of this paper provide the variational, weak and numerical formulation and the discret
of the problem of linearly elastic microstretch solid in three dimensions, as well as the
element package solving this problem. The aim of this article is to compare the resul
the numerical simulations with the known analytical solution. The analytical solution fi
problems of extension and bending for a homogeneous and isotropic microstretch cyl
shown in lesan and Nappa [1995] and for the torsion and flexure in De Cicco and Nappa

Section 2. presents the basic equations that characterize the boundary value proble
microstretch linearly elastic isotropic solid body. Weak formulation is presented as wel
tion 3. describes briefly the analitycal solution of the extension problem of the micros
cylinder. Section 4. presents in detail the finite element discretization of the problem
microstretch linearly elastic isotropic solid body in three dimensions. Section 5. prese
results of the numerical simulation of the extension problem of microstretch cylinder, cor
the results with the prediction of the theoretical solution and discuss the results. Section
a conclusion of the paper.

2. Basic equations

Let us denote3 the placement of the body under consideration in the three-dimension
clidean space so th&tis the set of all places occupied by the body at time We denotes,
the reference placement and it is the set of all pl&excupied by the body at time= 0. We
assume the Cartesian coordinate system throughout this paper. Comma denotes a par
entiation with respect to appropriate coordinate. Linear microstretch continuum is charax
by three independent kinematical fields: displacement fieldx — X, field of microscopice
rotations¢ and microstrech functiom which is a scalar function. Linear strain tensors
introduced in Eringen [1999] as

Egl = ULk + ElkemPm, Kk = <Z5k,l, Ve = 3¢,k7 e = 3. (1)
Balance equations comprise
tk =0,  Mygr + €mntmn =0, g —s =0, (2)

where we omitted the body loads for abbreviatigfn.denotes the Cauchy stress tensor thi
in general, non-symmetrich,, is the microstretch vector (sometimes called hyperstress
my, 1S the couple stress tensor. The couple stress tensor divergence is compensated by
symmentric part of the macroscopic stress tensor, whdempensates the divergence of
hyperstress and represents the net pressure involved in the dilatation of the microstruc
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origin is in the difference between traces of the macroscopic stress tensor and the mic
average, see Eringen [1999]. Constitutive relations of microstrech isotropic solid are fol

tw = (MY + Aemm)Oi + (1 + K)Ew + pew,
Mg = OkmmOp + Bk + Yk + (1/3)bo€mikYm,
hiy = aoyk + bo€rimKim,
s = MY+ Aockr, 3)

with 10 material moduld\, i, , o, 3, ¥, Ao» A1, ap @andby. Denotingt; the surface tractionj;
the surface moment aridthe microtraction, we may write the boundary conditions at re
points of0B as

gi = tjinj, mz = mjmj, ;L = hml (4)
We are limited to the linear theory so that the internal energy density is assumed to be a
definite quadratic form. Material stability requires that the material moduli fullfil the restric

3IN+2u+Kk>0, 3a+B+~v>0,
2/"L+I{ZO7 7+520a 7_5207 HZ(), (5)
3)\+2M+H23)\3/)\1, ag > 0, A > 0.

The variational formulation of the boundary value problem for linearly elastic microstretct
in three dimensions may be expressed as

/tij,j(SUde + /(mijﬂ' —+ ejkltkl>5¢jd9 + /(hw — S)(ﬁbdQ = 0, (6)

Q Q Q

with the boundary terms omitted for brevity afidbeing an arbitrary sub-volume of the bc
B andé denoting the variation with respect to the corresponding variable. Applying the
Theorem we obtain the weak formulation

/tij(éuj),idﬂ—f—Q/mij(égzﬂj),idQ—/ejkltklégbde+/hi(6¢)7id9+/35¢d§2 =0, (7)

Q Q Q Q

valid Vou;, d¢;, 01 andVve.

3. Microstretch cylinder

The analytical solution for the problems of extension and bending for a homogenec
isotropic microstretch cylinder is shown in lesan and Nappa [1995]. This problem was
for constitutive relations without the coupling terms with material paramgtefThese twc
terms (see (3)) were introduced later in Eringen [1999]. The solution of three dimer
problem is based on the solutions of three auxiliary plane strain problems, see e.g. le
Nappa [1994].

We consider a cylinder of isotropic material which occupies the reffiovhose boundar
is 0B. We assume that the cylinder is bounded by plane ends perpendicular to the ger
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The generic cross-sectiahis assumed to be a simply-connected regular region bounded
closed curvd.. The axisOz3 of our coordinate system will be directed parallel to the gener
of the cylinder. The cylinder is assumed to be of lengdmd one of its bases is taken to lie
the x1 Oz, plane while the other is in the plang = /. We denote bys the lateral surface
the cylinder. The cylinder is assumed to be free from lateral loadings.

Let us consider the extension of the microstretch cylinder. The loading applied on t
r3 = [ is assumed to be statically equivalent to a fokce= [0,0, F3]7. The solution of th
extension problem is

F. F: F. F.
Uy = —3V1$17 Uz = —3V1$2, Uz = ——3$3, or =0, Y= —3’/2, (8)

EA EA EA EA
whereA is the cross-section of the cylinder and

E = MN+2u+ K —2 v — Aoy,
vy = ()\—)\3/)\1)/(2>\+2M+K—2)\g/)\1), (9)
Vo = (1 - 2V1>)\0/)\1.

Other types of loading may be considered too. We have tried the simulations with the t
of the cylinder, however, the results were not satisfactory. After discussion with proffessc
we have found that there are typesetting errors in the analytical solution for bending ii
and Nappa [1995]. Recently, we have received the corrected version and the bendin
cylinder is studied intensively.

4. Finite element discretization

We use the following notation for the discrete counterparts of the microstretch quanti
stricted to a finite elemenmt straine®, torsion-curvature:®, macroscopic stregs,couple stres
me, hyperstres®® and net pressurg®. The discretized rank-2 tensors are stored as ve:
using the following ordering

1 ®12 933
N T
®;; = | ®21 ®22 ®33 ~[°11 €22 ©33 @15 @13 @33 €3 O3 ‘32} ) (10)
31 ®32 @33

i.e. we store first the diagonal, then the upper triangle and finally the lower triangle
us denote byp the (n x 1) vector of element restrictions of the base functions andzh)
i = 1,...,3 their derivatives with respect to the space coordinated et u®, ¢°, 1° be the
vectors of displacements, microrotations, and microstretch of element nodes respecti
d¢ = [u®, ¢°, 4°]" the compound vector of element unknowns. We also denbtgimensiona
identity matrix byI,. The constitutive equations for an isotropic microstretch material (.
the discrete form can be written in general as

o =D,Bd°, (11)

wheree € {t,m,h,s}. The particular forms ofD,, B are described below. Here® =
[u$, us, ug)?, ¢° = (@, PS5, P5]T and thusd® has lengthrn, wheren is the number of eleme
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nodes. The element approximations of unknown fields are then @’ u$, ¢; ~ ¢S,
i =1,2,3, ¢ =~ ol and their derivatives,; ; ~ G,u¢, ¢;; ~ G;¢¢, ¥ ; =~ Gp°. The
element restrictions of approximations of strain measures stored as vectors can be exp

follows (see (1)):

[ Ui i [ 0] [ G, i
Uz.2 0 G2
'LL373 0 Gg
U2,1 — @3 G —SOT .
e°= | ug1 | + P2 | = G, o : [ &° } ; (12)
Uus,2 — @1 G, —<PT
Us,2 ®3 G e’
U1,3 — 02 G, —SOT
| U3 | o1 L G; o’ 1
E[E;ﬂu]
[ d11 ] [ G4 i
G2, G,
®33 Gs
®1,2 G, (08 G,
K= | ¢13 | = G, @° o | R G, | Y°. (13)
2 G; Y3 G;
¢2,1 Gl =G,
®3.1 G,
| 932 | L G, J
-G
The matricedD,, B of (11) are in this case
t
D, D, D, Molg G y
D,, | _ D, bo P” — t
Dh o boP CLoIg ’ B o G (,OT ’ (14)
D, /\OlgT A01g“ M G.
where the § x 9) matrix P
—1 1
P= 1 -1 (15)
—1 1

corresponds to the alternating symlegl,, 1, [1,1,1]0,0,0]0,0,0]" and D,, D, are de
scribed below. First we define a transposition operdtpacting on tensors stored & x x)
matrices as given by relations = Jyv(= —v), G' = JyG; the' upper right index meat
transposition of the original matrix-like tensor. Then we can define

D2 = Oé]_g]_g; + ﬁ.]g + ’YIg .

Dy = ALo1g + (u+ k) Iy + pdy (16)
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The discrete version of the variational formulation (7), restricted te

(du)” / G'"D,B de| d°

e

+(5¢°)" / (G'"D,,, +v'D;)B de| d* (17)

e

+(o9)" / (GTDy, + ¢D,)B de| d° 2 0 Vou, 5¢p, 51 .

e

Hence it is easy to see that the element matrix is symmetric and has the following struc

C;TT.ch;]L GTTDll/ GTT/\()].QQOT
K° = I/T.ch;qL VTD11/ + C;TTDQC;Jf I/T)\()].QQOT + GTTb()PTGC . (18)
PTG | o1V + GTHy PG| oM ip” + G agI;G,

This block structure is also reflected in the assembled tangent stiffness matrix. Let us r
late the sizes of the involved matrices:

matrix | ¢ |G' |G.| v | D, | Dy | P K¢
rows n| 9 3 9 9 9 3| 3n+3n+n
columns|| 1 |3n | n | 3n] 9 9 9 | 3n+3n+n

It is worth noting that the stiffness matrix is indefinite and thus we are obliged use a
direct solver, e.g. UMFPACK (see Davis [2004]) for the resolution of the linear system.

5. Results and discussion

We study the extension of the cylinder described above with raditg).25 and lengthl = 2.
Thex3z = 0 plane is fixed while on thes; = [ plane the loading is applied. More precis:
nodal displacements; = 0 are set to zero on the; = 0 plane while the central node wi
the coordinatef, 0, 0]7 is fixed in all three (macroscopic) directions, iwe.= 0,7 = 1,2, 3 is
prescribed for this node. In the case of extension, the microrotations are fixed for all ni
the body, i.e; = 0,7 = 1,2, 3. Pressure is prescribed on the= [ plane equivalent td’ /A
value. Three dimensional mesh was constructed in Gambit, our finite element packe
used for computations and the results are visualized in ParaView software. Material par
were chosen so that the thermodynamical restrictions were fulfiled andgnith0 according
to the case studied in lesan and Nappa [1995]. Figure 1 presents the comparision of th
from simulation with values predicted by theory. The = [ was loaded with the presst
F3/A = 20.000. Figure 2 presents the comparision of the numerical and theoretical rest
various boundary conditions (pressure prescribed) as the dependence between the disf
u, of the loaded plane; = [ and the pressure applied on that plane.
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(a) simulation (b) theory
Figure 1: Distribution of the:, displacement field, pressu28.000 applied.

We are limited to the linear theory, of course, the dependence is linear. There is an ¢
discrepancy between the value predicted by theory and the result of the numerical sin
from the applied pressure valti¢.000. We may assume that from this point, the deformatic
no longer linear and model cannot give good results. Up to this value, the results are sati

0.14 —
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0.12 e simulation °

0.1
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N

= 0.06
0.04 —

0.02 —

0 5 10 15 20
pressure (x103)

Figure 2: Comparision of the displacementfrom simulations and theoretical prediction

6. Conclusion

This paper deals with the modelling of the cylinder with microstructure. Microstructt
described with the microstretch theory in which each point of the continuum can tra
rotate and deform uniformly without shear. Basic equtions of the theory are presented
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weak formulation is derived. The analytical solution of the extension of the linearly ¢
isotropic microstretch cylinder is shown. Finite element discretization is described in ¢
Numerical results are compared to those predicted by theory and the results are satisfa
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