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Summary: In the paper, we will describe our experiences with the full probabilistic
reliability assessment of a concrete beam by the finite element method using simu-
lation techniques. Special iterative solvers will be used for the efficient solution of
repeated linear elasticity models arising from the reliability assessment. Moreover,
the effect of mesh refinement is studied. The results of the assessment are presented
and discussed.

1. Introduction

Solving of a large linear system of equations plays important part in a mathematical modelling
using numerical methods such as Finite Element approximation. Popular direct solvers, which
are based on Gaussian elimination or LU-decomposition of the stiffness matrix are efficient
enough for small and middle-sized problems. Unfortunately, for large problems direct methods
become too expensive mainly due to the amount of storage of the elimination process. On the
other hand, iterative methods, such as Conjugate Gradient methods (CG), do not involve time
and memory consuming elimination process and CG-based algorithms can work very effec-
tively in modern high-performance parallel computer environment.
The paper is organized in a following way. In Section 2, we will introduce shortly the mul-
tiple linear system of equations. In Section 3, the Successive Block CG algorithm is briefly
described. Finally, an efficient solution of repeated linear elasticity models arising from the
probabilistic reliability assessment of a finite element model of a structure using the simula-
tion techniques will show the efficiency of the here presented approach. Moreover, the effect
of mesh refinement is studied and discussed. This extends experiments with iterative solvers
reported in [6] and [20].
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2. Multiple linear system of equations

Let us assume the following system of the linear equations with q right-hand sides (RHSs):

KX = F (1)

where K is a real symmetric positive definite sparse matrix of an order n and F = [f 1, . . . , f q]
is an n × q matrix of right-hand sides. Two basic approaches for solving the linear systems
of equation may be applied: direct and iterative methods. The direct methods are popular in
commercial software systems thanks to their robustness. The algorithms of this type involve a
factorization of the matrix K, which is computed only once, because the system of linear equa-
tion for all right-hand sides has the same stiffness matrix K. Unfortunately, the factorization
of the matrix K is memory consuming operation because the factorized matrix becomes more
dense than the original sparse matrix K. Hence, the direct methods could become impractical,
especially for three-dimensional problems, where the matrix K is very large. Furthermore, the
factorization of the sparse matrix is not well scalable operation so that its efficient parallel im-
plementation is not straightforward.
On the other hand, the iterative methods generate a sequence of approximate solutions {Xk}.
These methods involve the matrix K only in context of matrix-vector multiplication. Due to this
fact, it is sufficient to store only nonzero elements of the matrix K and sophisticated storage
systems for sparse matrices (for example see [12]) which saves memory requirements may be
used. A usage of the iterative solvers is also popular on parallel computation architecture, see
[14]. The most popular iterative method is the well-known conjugate gradient (CG) method.
This paper presents our experiences with the Successive Block CG method for solving (1) where
all the right-hand sides are available simultaneously.

3. The Successive Block CG Method for multiple right-hand sides

The original Block CG algorithm [7], [11] requires to compute the inversion of the matrices
P T

k KPk and RT
k M−1Rk. Generally, the search direction matrix Pk and the matrix of residuum

Rk may not have the full column rank, for example when the RHSs vectors are linearly depen-
dent. If a stable version of BCG is required, the linear dependent RHSs have to be removed
from the problem. Unfortunately, the norms of residuals of these linear dependent RHSs do
not need to be small enough. We shall discuss now how to find smartly the solution of these
unsolved RHSs.

The stable version of the BCG algorithm has to monitor the column rank of the direction
matrix Pk or Rk. In particular, this matrix does not have the full column rank, the BCG method
removes these linear dependent RHSs from the problem even if the corresponding residuals of
these RHSs are not small enough. On the other hand, the Successive block CG method removes
these dependent RHSs only from the search direction process. The corresponding solutions Xs

k

are obtained by successive approach. Following [11], the preconditioned SBCG method for
multiple RHS vector is described in the following way.
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Algorithm SBCG [Preconditioned Successive Block CG Method]

Initialize: k = 0; R0 = F −KX0;
fill the sets m and s such that m ∪ s = {1, . . . , q} and m ∩ s = {};
while (max(‖rm

k ‖/‖rm
0 ‖) > ε, i = 1, . . . , q) and (k < kmax) do

begin
k = k + 1;
solve MZk = Rm

k ;
analyse (Rm

k−1)
T Zk−1; move dependents RHSs to the slave sytem;

if k = 1 then
P1 = Z0;

else
βk = ((Rm

k−2)
T Zk−2)

−1(Rm
k−1)

T Zk−1;
Pk = Zk−1 + Pk−1βk;

endif.
Uk = KPk;
[αm

k , αs
k] = (P T

k Uk)
−1[(Rm

k−1)
T Zk−1, (R

s
k−1)

T Zk−1];
[Xm

k , Xs
k] = [Xm

k−1, X
s
k−1] + Pk[α

m
k , αs

k];
[Rm

k , Rs
k] = [Rm

k−1, R
s
k−1]− Uk[α

m
k , αs

k];
end.

Let us summarize this algorithm. Firstly, SBCG splits the separate RHSs into the two disjoint
following sets. Initially, the set m contains the indexes of the master RHSs and the set s con-
tains the indexes of the slaves RHSs. The RHSs corresponding to the set m are solved using
the BCG algorithm. Let symbol |m| denotes the number of indexes in master set m. Then
the search direction Pk is n × |m| matrix. To prevent numerical instability during the search
direction process, the full column rank of Pk have to be guaranteed.
Let 0 ≤ coef ≤ 1 is a given constant. In our code, numerical stability of matrix (Rm

k−1)
T Zk−1

is monitored by the orthogonal-triangular decomposition in the following way.

Algorithm Findep [Find and remove dependent indexes]

Orthogonal-triangular decomposition: [q, v] = qr((Rm
k−1)

T Zk−1);
for i = 1 until |m| do
begin {for each master index}

relcoefi = |vii|/max(|vii|);
if relcoefi < coef then

move m(i)-th index to the slave system;
endif.

end.

Of course, the most time-consuming operation of the Findep algorithm is the orthogonal-
triangular decomposition. Let us accent that the size of this decomposition depends only on
the number of indexes in master set m. We shall discuss the value of the coefficient coef in the
following section.
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4. Probabilistic reliability assessment of structures

Let the resistance of the structure is expressed by the variable R and load effect by variable S.
Let the safety of the structure is expressed using the safety function Z in the following way:

Z = R− S. (2)

The situations where Z < 0 represents a failure in the structure, whereas situations Z > 0 are
safe, see for instance [15], [16] and [17]. Of course, both variables R and S are random by
nature and the equation 2 can be rewritten as

Z = g(X1, X2, . . . , Xn). (3)

Here symbols X1, X2, . . . , Xn denotes random variables, which express a rule geometrical
and material characteristics, loadings and optionally effects of other factors and the symbol g
denotes the performance function of the structure. For more details see for instance [15], [16]
and [17]. Than probability of the failure of the structure can be formulated by the form

Pf = P (Z < 0) = P (g(X1, X2, . . . , Xn) < 0). (4)

The aim of the probabilistic reliability assessment leads to the reliability check expressed by

Pf < Pd, (5)

where the symbol Pf denotes the calculated probability of failure and the symbol Pd denotes
the target design probability Pd given in (expert) codes, see for instance [15], [16] and [17].
The equation 4 can be calculated approximately by FORM and SORM methods, see for instance
[15] or directly by the simulation approach, see for instance [16] and [17] and [15].

4.1. Model description

This example was derived from the Calfem home page [23], see ”CALFEM/Pre user interface
tutorial”, where it is possible to find the finite element model and its solution via Calfem tool-
box, too. In this paper, we extend the original deterministic model by the case where all loads
are assumed to be random variables. Moreover, the probabilistic reliability assessment of the
structure will be estimated by simulation approach using direct Monte Carlo method and Im-
portance Sampling method.
Consider the concrete frame subjected to a uniformly distributed loads F1, F2, . . ., F6 as shown
in Fig. 1. The model has the following deterministic parameters: Young’s modulus E = 10.5
GPa, Poisson’s ratio ν = 0.15 and thickness t = 0.20 m. All loads are assumed to be normal
random variables with parameters as shown in Tab. 1.

The frame is discetized using the finite element code CALFEM. In order to study the effect
of mesh refinement, we assumed two various finite element meshes, denoted as Geometry5 and
Geometry7, see Fig. 2 and Fig. 3.

In our model, the safety function (2) was expressed in the following way. The R denoted
concrete tensile strength described by normal random variable with parameters R = 1 ± 0.1
MPa. The S denoted the maximum value of the main principal stress of an element of the
structure. For evaluating of deterministic values of S we used modified deterministic Calfem
finite element model taken from [23]. The computation of probability of failure by (4) was
powered by the SBRA method, see for instance [16], [17] and [18].
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Figure 1: The model problem for the probabilistic reliability assessment. The geometry of the
frame contains 5 subdomains denoted by symbols 1, 2, . . . , 5.

Table 1: Parameters of the random loads.
Variable name Mean value Standard deviation

F1 15 kN 5 kN
F2 15 kN 5 kN
F3 15 kN 5 kN
F4 4 kN 4 kN
F5 4 kN 4 kN
F6 0 kN 4 kN

4.2. Preprocessing

In order to detect low probability events on tail areas, we used the variance reduction technique
based on Importance Sampling. With the current implementation, the importance sampling den-
sity function is set as the uniform distribution on the same domain as the original distribution.
Numerical experiments indicated advantages of this selection when no additional information
about structural behaviour is available. For implementation details see [22] and [19]. Moreover,
the same probabilistic reliability assessment problem was solved also by the direct Monte Carlo
simulation.
Because of the fact that we assume stochastic character of loads in our model, the stochastic
contribution of random loads will influence only the right hand side vectors of the linear system
of equations.

4.3. Processing

When the FEM mesh Geometry5 was applied, 1 000 simulation steps were computed, so the
corresponding multiple system of linear equations had 1 000 right hand sides and the total num-
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Figure 2: The finite element mesh of the frame using CALFEM (Problem name: FEM-
Frame2 Geometry5).

ber of unknowns was 16 188× 1 000, see Tab. 2.
As the solver of this multiple linear system of equations we used the SBCG algorithm, where
the coef was selected as a parameter, see Tab. 3.
Analysing Tab. 3 we can see, that the coeq = 10−6 is the best choice for our case. For example,
in order to solve 1 000 right hand sides using the SCG method, 1 424.75 sec. were needed,
while the ”favored” SBCG algorithm with coeq = 10−6 needed only 546.578 sec. The SBCG
relative speed-up was 1 424.75/546.578 ≈ 2.6. On the other hand, the number of matrix-vector
operation was smaller when SCG algorithm was applied. To solve all 1 000 linear systems of
equations, only 446 matric-vector operations were needed. Let us notice that the solution of one
linear system by the classical PCG required 205 matric-vector operations. When the finer FEM
mesh Geometry7 was applied, only 100 simulation steps were assumed because of a limited
computer memory, so the corresponding multiple system of linear equations had 100 right hand
sides and the total number of unknowns was 31 512× 100, see Tab. 2.

4.4. Postprocessing

The aim of this example was to find a distribution of main principal stresses of elements in the
structure. For computation of element stresses Es = (σx, σy, τxy) from the element displace-
ment vector we used the Calfem call ’planrs’. Then we calculated for each element in domain
the maximum and the minimum values (variables denoted here as σ1, σ2) of the main principal
stress in the following way:
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Figure 3: The finite element mesh of the frame using CALFEM (Problem name: FEM-
Frame2 Geometry7).

Algorithm Myprincs [Compute principal stresses]

sp = 0.5(σx + σy +
√

(σx − σy)2 + 4τ 2
xy);

sm = 0.5(σx + σy −
√

(σx − σy)2 + 4τ 2
xy);

σ1 = max(sp, sm);
σ2 = min(sp, sm);

Of course, the algorithm Myprinc was run in each simulation. These simulation results were
subsequently statistically processed for Geometry5, see Tab. 4, Tab. 5 and for Geometry7 see
Tab. 6. In order to obtain information about the distribution of the maximum value of the
main principal stresses in geometry, the reliability analysis was computed in five subdomains
of the structure separately. Tables contain results of the variable σ1 taken from the algorithm
Myprincs. For instance, the column denoted as D5max contains probabilities of exceeding
values of the first column of the table in the geometry domain no. 5.

The minimum observed value of σ2 was −1.25.106 for Importance Sampling method with
Geometry5. This observed value is very far from the critical value -20 MPa, so results of σ2

were not printed.
Analysing results of Tab. 4 we can see that the direct Monte Carlo method did not detect extrem
events in which the variable σ1 was greater than 1.4.106 at all. On the other hand, Importance
Sampling method detected low probability cases σ1 > 2.106.
The row of Tabs. 4 and 5 denotes as ’SF’ contain results of the safety function 2. The probability
of a failure was estimated by direct Monte Carlo method as Pf = 1 − 0.911 = 0.0890. When
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Importance Sampling was applied, the probability of failure was estimated as Pf = 1−0.961 =
0.0390, .

When the finer FEM mesh Geometry7 was applied, the probability of failure was estimated
as Pf = 1 − 0.95184 = 0.04816, see Tab. 6. This probability of failure was estimated only by
100 simulation steps because of limited computer memory.

Compared both analyses, the estimated probability of failures are not sensitive to mesh re-
finement. Let us accent that the Importance Sampling approach benefits the detection of low
probability (critical) events. Of course, by repeating the probabilistic reliability assessment it is
possible to obtain information about variance (i.e. accuracy) of estimated results.

Table 2: Properties of the multiple linear system of equations for the probabilistic
reliability assessment example (Problem name: FEMFrame2 Geometry5 IS and FEM-
Frame2 Geometry7 IS, reps = 0.0001, rdep = 10−6).

geometry Geometry5 Geometry7
# unknowns per rhs 16 188 31 512
# rhs 1 000 100
# iterations 254 273
# mat-vec 595 739
Elapsed time (s) 546.578 208.438

Table 3: Comparison of the SBCG results for the probabilistic reliability assessment example.
coef 1.00E-08 1.00E-06 0.0001 0.1 1 (=SCG)
# iterations 308 254 267 747 446
# mat-vec 614 595 681 757 446
Master max.size 6 6 6 2 1
Elapsed time (s) 934.219 546.578 812.375 2316.48 1424.75

5. Conclusions and future work

In this paper, the Stable Block Conjugate Gradient Algorithm for the solution of linear systems
with symmetric, positive definite matrices and with multiple right-hand sides is considered.
The method was compared on a linear elasticity model arising from the probabilistic reliability
assessment of a finite element model of a structure using the Monte Carlo method and Impor-
tance Sampling. The effect of mesh refinement was studied and discussed. In future work we
would like to solve real 3D large large scale applications and dynamic reliability problems [1],
[2]. The paper can be considered as a complement of the papers [6], and [20].
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Table 4: Probability to exceed selected values of the maximal principal stresses of each domains.
Direct Monte Carlo results of the probabilistic reliability assessment (Geometry5, MC 1 000
steps).

Value D1Max D2Max D3Max D4Max D5Max GlobMax SF
0 1 1 1 1 1 1 0.911
900000 0.001 0.152 0 0.002 0.045 0.152 0.005
1.E+6 0 0.073 0 0 0.013 0.073 0
1.1E+6 0 0.024 0 0 0.005 0.024 0
1.2E+6 0 0.008 0 0 0 0.008 0
1.3E+6 0 0.002 0 0 0 0.002 0
1.4E+6 0 0 0 0 0 0 0
1.5E+6 0 0 0 0 0 0 0
1.6E+6 0 0 0 0 0 0 0
1.7E+6 0 0 0 0 0 0 0
1.8E+6 0 0 0 0 0 0 0
1.9E+6 0 0 0 0 0 0 0
2.E+6 0 0 0 0 0 0 0

Table 5: Probability to exceed selected values of the maximal principal stresses of each domains.
Importance Sampling results of the probabilistic reliability assessment (Geometry5, IS 1 000
steps).

Value D1Max D2Max D3Max D4Max D5Max GlobMax SF
0 1 1 1 1 1 1 0.961
9e+5 0.00221 0.224 2.39e-7 0.00408 0.0137 0.226 0.00764
1e+6 0.00203 0.134 3.5e-11 0.00128 0.00739 0.136 0.000208
1.1e+6 6.02e-5 0.0129 0 8.09e-6 0.0041 0.013 1.25e-5
1.2e+6 2.46e-6 0.00452 0 2.98e-7 0.00145 0.00452 5.26e-6
1.3e+6 2.39e-7 0.00401 0 4.27e-9 0.000331 0.00401 0
1.4e+6 1.59e-9 0.00131 0 4.27e-9 5.76e-6 0.00131 0
1.5e+6 3.5e-11 4.08e-5 0 0 3.14e-7 4.08e-5 0
1.6e+6 0 2.67e-6 0 0 4.27e-9 2.67e-6 0
1.7e+6 0 2.45e-6 0 0 4.27e-9 2.45e-6 0
1.8e+6 0 4.42e-9 0 0 0 4.42e-9 0
1.9e+6 0 4.27e-9 0 0 0 4.27e-9 0
2e+6 0 4.27e-9 0 0 0 4.27e-9 0
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Table 6: Probability to exceed selected values of the maximal principal stresses of each do-
mains. Importance Sampling results of the probabilistic reliability assessment (Geometry7, IS
100 steps).

Value D1Max D2Max D3Max D4Max D5Max GlobMax SF
0 1 1 1 1 1 1 0.95184
900000 0.00894 0.06116 8.64e-6 0.02238 0.05125 0.0644 0.00468
1e+6 0.00017 0.04793 0 0.00683 0.02261 0.04797 6.41e-5
1.1e+6 4.88e-5 0.02265 0 0.00480 0.01732 0.02273 5.45e-5
1.2e+6 4.88e-5 0.02238 0 1.15e-6 0.00505 0.02240 0
1.3e+6 3.61e-8 0.01806 0 5.76e-8 0.00485 0.01806 0
1.4e+6 0 0.01234 0 0 0.00067 0.01234 0
1.5e+6 0 0.00484 0 0 1.15e-6 0.00484 0
1.6e+6 0 0.00022 0 0 1.15e-6 0.00022 0
1.7e+6 0 1.15e-6 0 0 5.76e-8 1.15e-6 0
1.8e+6 0 5.76e-8 0 0 0 5.76e-8 0
1.9e+6 0 0 0 0 0 0 0
2e+6 0 0 0 0 0 0 0
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[4] Z. Dostál, V. Vondrák and J. Rasmussen: Implementation of iterative solvers in shape
optimization. 2nd World Congress on Structural and Multidisciplinary Optimization, Za-
kopane (1997), published in proceedings, IFTRWarzsaw, eds. W. Gutkowski and Z. Mroz,
pp.443-448. ISBN 83-905454-7-0.
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