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Summary: The paper deals with the shape sensitivity analysis of the steady vis-
cous incompressible fluid flow in a curved closed channel. The objective function
which is analyzed is aimed at reducing nonuniformity of the outlet stream. The ge-
ometry of the channel is embedded in a 3D domain parametrized by splines, so that
it is handled using positions of control points. This allows for simple computing
the design velocity field defined inside the channel and involved in the sensitivity
formulae derived using the material derivative and adjoint system technique. The
sensitivity algorithm can be employed in gradient-based optimization of the chan-
nel shape. Some numerical examples are presented to illustarte performance of the
implemented sensitivity formuale.

1. Introduction

Shape optimization in fluid mechanics belongs still to most challenging areas of research in
the structural optimization, bringing about many difficulties in both theory and numerical im-
plementation. At the same time, it is very attractive for engineering community due to vast
industrial applications, such as wings, car bodies, jets and many others related to industrial
technologies. The topic of the sensitivity analysis in flow problems has been addressed usually
in the context of wing and body aerodynamics, often treated using so-called automatic differ-
entiation of the code supplying the state problem solutions; a comprehensive survey of various
methods problems was issued in [Mohammadi and Pironneau 2001].

In this paper we present the shape sensitivity analysis for flow problems defined in closed
channels. We restrict ourselves to the case of steady incompressible flows described by the
Stokes, or the Navier–Stokes system of equations. Although the sensitivity formulae for this
situation were issued in [Mohammadi and Pironneau 2001], we use the material derivative tech-
nique in the domain approach, see e.g. [Haslinger and Neittaanmaki 1988, Haug et al. 1986];
this leads to more accurate sensitivities in comparison with boundary integral technique which
requires computation of velocity gradients on the design surfaces (for other applications pur-
sued by the authors see [Rohan and Whiteman 2000, Rohan 2003, Rohan and Miara 2006]).
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For parametrization of the channel shape we use the FFD (free-form deformation) approach
based on 3D spline volumes, cf. [Menzel et al. 2005, Samareh 2000], which enables to modify
the design surface and the domain FE mesh by the same handles. Since we are interested in
optimization of channels with branches, we consider the 3D domain of interest as decomposed
into several sub-bodies, so that the shape changes can better be localized.

In Section 2. we introduce both the state and the optimal shape problems, for which in
Section 3. the sensitivity analysis is presented. The design parametrization based on the spline
volumes is discussed in Section 4.. For confirmation of the theoretical results developed, in
Section 5. we describe the sensitivity analysis implementation and illustrate its performance in
a simple test example.

2. Problem setting

The fluid problem is defined in an open bounded domain Ω ⊂ IR3 which is decomposed in two
parts

Ω = ΩD ∪ ΩC with ΓC = ∂ΩD ∩ ∂ΩC , (1)

where ΩC is the control domain and ΩD is the design domain, both separated by interface
ΓC ⊂ ∂ΩC , where in general ∂Ω ∩ ∂ΩC 6= ∅, see Fig. 1. The shape of ΩD is modified
exclusively through the design boundary, ΓD ⊂ ∂ΩD \ (Γin−out ∪ ΓC) where Γin−out ⊂ ∂Ω
is the union of the “inlet-outlet” boundary of the channel; in general Γin−out consists of two
disjoint parts, Γin−out = Γin ∪ Γout.

2.1. State problem – flow through the channel

We are interested in steady state incompressible flows in domain Ω which are described by the
following problem: find a velocity, u, and pressure, p, fields in Ω such that (ν is the kinematic
viscosity)

−ν∇2u + u · ∇u +∇p = 0 in Ω ,

∇ · u = 0 in Ω ,
(2)

with the boundary conditions

u = 0 on ∂Ω \ Γin−out ,

−pn +
∂u
∂n

= −p̄n on Γin−out ,
(3)

Figure 1: The decomposition of domain Ω, control domain ΩC at the outlet sector of the channel.
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where n is the unit outward-normal vector on Γin−out and ∂
∂n

= n · ∇. Note that by (3)2 we
prescribe the stress in the form of pressure p̄ (defined for Γin and Γout by p̄1 and p̄2, respectively),
so that we enforce the condition of ∂u

∂n
= 0, i.e. the flow is uniform in the normal direction w.r.t.

Γin−out.
In order to set the optimal shape problem and to derive the sensitivity formulae, we use the

weak formulation of (2)-(3). For this we need to introduce the functional forms (i = 1, 2, 3,
summation convention is employed)

aΩ (u, v) = ν

∫
Ω

∇u : ∇v = ν

∫
Ω

∂ui

∂xk

∂vi

∂xk

,

cΩ (w, u, v) =

∫
Ω

(w · ∇u) · v =

∫
Ω

wk
∂ui

∂xk

vi ,

bΩ (u, p) =

∫
Ω

p divu ,

(4)

and the space of admissible velocities

V0 = {v ∈ H1(Ω) | v = 0 on ∂Ω \ Γin−out} , (5)

where H1(Ω) = [H1(Ω)]3.
With the notation just introduced we may pass to the weak formulation of our flow problem;

on multiplication of (2) and (3) by the test functions v and q, respectively, and on integrating
over Ω, we obtain the following problem: find u ∈ V0(Ω) and p ∈ L2(Ω) such that

aΩ (u, v) + cΩ (u, u, v)− bΩ (v, p) = −
∫

Γin−out

p̄ v · n dS ∀v ∈ V0 ,

bΩ (u, q) = 0 ∀q ∈ L2(Ω) .

(6)

2.2. Objective function – optimization problem

We have introduced the model of flow in channel Ω, which can be modified by changing the
shape of ΓD. Our objective of such a shape modification is to reduce the gradients of the flow
velocities in domain ΩC and thereby to enhance the flow uniformity in a neighbourhood of the
outlet, where the control domain ΩC is situated. We suggest that this merit can be pursued by
minimization of the objective function Ψ(u) by means of ΓD:

min
ΓD

Ψ(u) ,

subject to: (u, p) satisfy (6) ,

ΓD in Uad(Ω0) ,

where Ψ(u) =
ν

2

∫
ΩC

|∇u|2 =
1

2
aΩC

(u, u) .

(7)

Above (7)2 imposes the admissibility of the state, i.e. of the velocity and pressure fields, whereas
(7)3 restricts shape variation of ΓD w.r.t. some “initial” shape inherited from the reference
domain Ω0 which defines the associated set of admissible shapes, Uad(Ω0); we shall discus this
topic later on, when reporting the domain parametrization of ΩD. It should be noted that the
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objective criterion expressed in terms of Ψ(u) depends on the design only in terms of the state
variable, as the control domain, ΩC , is independent of any design modification. This point is
important for feasibility of the optimal problem2.

3. Sensitivity analysis – domain method

The aim of this section is to introduce the sensitivity formulae which describe how the quantities
of interest change when the design domain is being modified. More precisely, we follow the
approach of the material derivative associated with the so-called design velocity field ~V : ΩD →
IR3 representing an artificial flux of material particles. Thus, for any (feasible) infinitesimal
design change in the direction of velocity field ~V we shall be able to predict the associated
sensitivity as the directional domain derivative. In what follows, by δf we refer to the total
(directional) derivative of a function, or functional f , whereas notation δDf is reserved for the
partial derivative w.r.t. domain perturbation (infinitesimal) in the direction ~V . Let u : Ω → IR
be real valued function and fΩ(u) a real valued functional depending on domain Ω. The total
sensitivity of f is given by

δfΩ(u) = δDfΩ(u) + δufΩ(u) ◦ δu , (8)

where δuF (u) ◦ v means the Gateaux differential of F (u) w.r.t. u in the direction v. In the
optimal shape problems, quantity u is typically the solution of a state problem considered, thus
depending on the design of Ω, so that δu is the (total) material derivative of u w.r.t. the domain
perturbation.

First we introduce the feasible design velocity fields in the context of our problem (7): ~V is a
feasible w.r.t. ΩD iff the following holds:

supp~V ⊂ ΩD and ~V = 0 on Γin−out ∪ ΓC ,

~V is differentiable in ΩD.
(9)

3.1. Sensitivity formula and optimality conditions

In this section we present the sensitivity formula for computing δΨ(u) in the sense of (8). We
consider the Lagrangian associated with (7)

L(ΓD, u, p, w, q) = Ψ(u)

+ aΩ (u, w) + cΩ (u, u, w)− bΩ (w, p) +

∫
Γin−out

p̄ v · n dS + bΩ (u, q) ,

(10)

where w ∈ V0 and q ∈ L2(Ω) are the Lagrange multipliers associated with state problem
constraint imposed in (7). The desired sensitivity formula can be obtained using the KKT
conditions concerning the “inf-sup” problem

inf
ΓD,u,p

sup
w,q

L(ΓD, u, p, w, q) . (11)

2 Obviously, assuming bounded gradients |∇u|, their minimization as integrated over a design-dependent domain
could lead just to annihilation of such a domain without any effect on the velocity field.
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We shall now consider only such paths in the set of all primary-variable states (ΓD, u, p), that
for each design ΓD we find its associated admissible state (u, p). With restriction to such paths
we compute the sensitivity of L:
δL(ΓD, u, p, w, q) = δDaΩ (u, w) + δDcΩ (u, u, w)− δDbΩ (w, p) + δDbΩ (u, q)

+ aΩ (δu, w) + cΩ (δu, u, w) + cΩ (u, δu, w)− bΩ (w, δp) + bΩ (δu, q)

+ δuΨ(u) ◦ δu
= δΨ(u) ,

(12)

where the last equality follows from the state admissibility; indeed, for a given design ΓD,
the state admissibility conditions (6) hold, so that except of Ψ(u) all terms in (10) vanish. As
a further consequence, (6) being satisfied corresponds with δu,pL = 0, as expressed by the
optimality conditions

δuL(ΓD, u, p, w, q) = 0 = δuΨ(u) ◦ v
+ aΩ (v, w) + cΩ (v, u, w) + cΩ (u, v, w) + bΩ (v, q) ,

δpL(ΓD, u, p, w, q) = 0 = bΩ (w, η) ,

(13)

for all v ∈ V0 and for all η ∈ L2(Ω). Problem (13) is called the adjoint state problem and
allows for eliminating the total derivatives δu, δp from sensitivity formula (12). It is readily
seen that, on substituting in (13) the test functions v = δu, η = δp, in (12) we may cancel all
terms except the partial design sensitivities. Therefore, the sensitivity analysis with restriction
to the admissible states is performed, as follows: Given a design ΓD, adjust domain ΩD and

- compute the admissible state (u, p) by solving (6),

- compute the adjoint state (w, q) by solving (13),

- compute the sensitivity w.r.t. given design velocity field ~V using

δΨ(u) = δDaΩ (u, w) + δDcΩ (u, u, w)− δDbΩ (w, p) + δDbΩ (u, q) . (14)

Below we shall derive the particular partial design sensitivities employed in (14), which depend
on ~V . It is worth noting that the r.h.s. functional of the adjoint state problem is constituted by
−δuΨ(u) ◦ v = −aΩC

(u, v), which is integrated only over Ωc, however, the adjoint state is
defined in the entire Ω.

3.2. Partial shape derivative

Once the design velocity field is defined, the design domain can be parametrized by means of a
scalar parameter τ : let ~V is feasible according to (9), we introduce

ΩD(τ) = {y} where yi(x, τ) = xi + τVi(x) , x ∈ ΩD, τ ∈ IR . (15)

Above and in what follows by ΩD we denote the fixed domain, whereas ΩD(τ) is the perturbed
one. Recalling the general sensitivity relation (8), we define the partial shape derivative of
fΩ(u)

δDfΩ(u) =
d

d τ

(
fΩD(τ)(u)

)
τ=0

. (16)
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In order to compute the partial shape derivative involved in (14), we need the following prelim-
inaries, which are easy to verify (J(y(x, τ)) = det[∂yi(x, τ)/∂xj]):

δD

(
∂yi

∂xj

)
=

d

d τ

(
∂yi(x, τ)

∂xj

)
τ=0

=
∂Vi(x)

∂xj

,

δD

(
∂xk

∂yj

)
=

d

d τ

(
∂xk

∂yj(x, τ)

)
τ=0

= − ∂Vk(x)

∂xj

,

δD (J(y)) =
d

d τ
(J(y(x, τ)))τ=0 =

∂Vi(x)

∂xi

= div~V .

(17)

We are now ready to apply (16) to variation of aΩ (u, w); note that only ΩD is being perturbed
because of restricted support of ~V , so that δDaΩ (u, w) = δDaΩD

(u, w). Therefore, we consider

aΩD(τ)
(u, w) = ν

∫
ΩD(τ)

∂ui

∂yk(τ)

∂wi

∂yk(τ)
dy

= ν

∫
ΩD

∂ui(x)

∂xj

∂xj

∂yk(x, τ)

∂wi(x)

∂xl

∂xl

∂yk(x, τ)
J(y(x, τ)) dx .

(18)

On differentiating above w.r.t. τ , using (17) we get the desired expression

δDaΩ (u, w) = ν

∫
ΩD

[
∂ui

∂xk

∂wi

∂xk

divV − ∂Vj

∂xk

∂ui

∂xj

∂wi

∂xk

− ∂ui

∂xk

∂Vl

∂xk

∂wi

∂xl

]
. (19)

In much the same way one finds the formulae for other sensitivities involved in (14):

δDcΩ (u, u, w) =

∫
ΩD

[
uk

∂ui

∂xk

wi divV − uk
∂Vj

∂xk

∂ui

∂xj

wi

]
, (20)

δDbΩ (u, q) =

∫
ΩD

q

[
divu divV − ∂Vk

∂xi

∂ui

∂xk

]
. (21)

We may conclude that using (19)-(21) applied in (14), the total shape derivative can be recovered
for any feasible ~V; construction of such ~V for our specific design parametrization is addressed
in the next section.

4. Domain parametrization

The sensitivity analysis developed in previous sections is based on the directional derivatives of
given functionals, see (14), w.r.t. a given design velocity field ~V . In this section we introduce a
parametrization of ~V which is based on the free-form deformation (FFD) approach, as reported
e.g. in [Samareh 2000].

The FFD method of parametrization is based on the domain parametrization using B-spline,
or Bezier volumes. As we stem for treatment of complex channels with many branches, we use
splitting of Ω into several subdomains, each one handled by one B-spline volume, so that we
need to introduce some continuity conditions.
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Let Ω0 be a reference (initial) domain embedded in the box B0 ⊂ IR3; we consider a nonover-
lapping decomposition

Ω0 ⊂ B0 = Πk=1,2,3]ak, bk[ ,

B0 =
NSB∑
I=1

BI
0 , BI

0 =]aI
k, b

I
k[

such that

BI
0 ∩ BJ

0 = ∅ for I 6= J ,

and for I 6= J : BI
0 ∩ BJ

0 ≡ SIJ
0 6= ∅ iff ∃k, l, m ∈ {1, 2, 3} : SIJ

0 = xm × [aI
k, b

I
k]× [aI

l , b
I
l ]

where xm = aI
m = bJ

m, or xm = bI
m = aJ

m .

(22)

Thus, the domain of interest is embedded in the box B0 which is then partitioned into sub-boxes
BI

0 by planar cuts, so that their closures (i.e. including the boundary) have common entire faces
SIJ

0 . Each sub-box BI is parametrized and “shaped” by the B-spline volume SI which is defined
in terms of the control vertices bijk = (bijk

r ) ∈ IR3 and the spline basis functions N i(t), t ∈ IR
(in our case we use the cubic splines)

BI 3 x = SI({b}, {N}, t) ≡

 ī∑
i=1

j̄∑
j=1

k̄∑
k=1

bijkN i(t1)N
j(t2)N

k(t3)


I

, t = (tr) ∈ BI
0 ,

(23)

where the bracketed notation [·]I refers to the data associated with BI . It is worth noting that
the initial boxes BI

0 serve for the domain of spline parametrization, so that on selecting bijk as
the Greville abscissae gijk, cf. [Hoschek and Lasser 1992], we recover the initial sub-boxes, i.e.
we have the identity property BI

0 = SI({g}, {N},BI
0)

BI
0 3 t = x =

 ī∑
i=1

j̄∑
j=1

k̄∑
k=1

gijkN i(t1)N
j(t2)N

k(t3)


I

. (24)

Let ΩI
0 = Ω0 ∩ BI

0 , so that we have Ω0 =
∑NSB

I=1 ΩI
0 and ΩI

0 = SI({g}, {N}, ΩI
0) due to the

identity property. Obviously, the domain Ω0 (or merely its subdomain) is modified in terms of
control points {[b]I}NSB

I=1 which are subject to the interface conditions:

P IJ [b]J = P JI [b]I for any I, J : SIJ
0 ∩ Ω0 6= ∅ , (25)

where P IJ and P JI are the coupled continuity operators which make the links between the
control points of neighbouring sub-boxes; the details concerning these operators are beyond the
scope of this paper. For any {[b]I}NSB

I=1 such that (25) holds we obtain an image Ω of Ω0 by a
one-to-one mapping:

Ω =
NSB∑
I=1

SI({b}, {N}, ΩI
0) such that:

∀SIJ
0 : if Ω0 3 x ∈ SIJ

0 ⇒SI({b}, {N}, x) = SJ({b}, {N}, x)

for any {[b]I}NSB
I=1 satisfying (25).

(26)
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Obviously, property (26) can be expressed in terms of a (matrix) operator as

B({b}) = 0 ⇔ (25) holds. (27)

The design variables γα, α = 1, . . . , ᾱ can be introduced as multipliers associated with the
elements of the kernel of operator B:

{b} = {g}+
ᾱ∑

α=1

γα{d}α , where {d}α ∈ KerB and ᾱ ≤ card(KerB) , (28)

so that for any γ = (γα) using the Greville abscissae {g} we define control points {b} which
satisfy (27); note that also {g} ∈ KerB by (24). On the other hand, as we impose some
smoothness properties on the shape ΓD ∈ Uad, we still must confine the design variability
by introducing an admissibility set Dad. Moreover, for protecting the control domain, ΩC , as
well as the input and output boundaries, Γin−out, from the design modification, we have further
restriction on the selection of those design variables which can actually be manipulated. Thus,
we define Dad in an “implicit way” as the set of all γβ, β ∈ Iad ⊂ [1, ᾱ] such that

γβ ∈ [γβ, γβ] ∀β ∈ Iad,

ΩC0
!
=

NSB∑
I=1

SI({g}+ γβ{d}β, {N}, ΩI
C0), ∀β ∈ Iad,

Γin−out0
!
=

NSB∑
I=1

SI({g}+ γβ{d}β, {N}, Γin−out
I
0) ∀β ∈ Iad,

Uad

!
3 ΓD =

NSB∑
I=1

SI({g}+
∑

β∈Iad

γβ{d}β, {N}, ΓI
D0) ,

(29)

where ΓI
D0 and ΩI

C0 are the I-th sub-box restrictions of ΓD and ΩC , respectively, in the “initial
configuration” Ω0. Above in (29)1, as usually, we impose box constraints, whereas in (29)4 we
constrain the design variables to obtain admissible variation of ΓD.

Having defined the design variables and the admissibility set, Dad, we can introduce the
design velocity field associated with a change in γ (denoted by δγ):

~V =
NSB∑
I=1

SI(
∑

α∈Iad

δγα{d}α, {N}, ΩI
0) , (30)

so that by virtue of (29), ~V is admissible according to (9). So, for each variable γα, α ∈ Iad we
can obtain easily the α-th basic velocity, ~Vα which allows for computing the design gradients
of Ψ(u). We define

~Vα =
NSB∑
I=1

SI({d}α, {N}, ΩI
0) , (31)

and evaluate (19)-(21) for this ~Vα. Then, on substituting the partial sensitivities into (14), we
obtain ∂Ψ(u)/∂dα, the α-th component of the design gradient.
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ΩD

ΩC

Γout

Γin

ΓC

ΓD

Fig. 2. The decomposition of Ω. Fig. 3. Perturbation of the initial shape of Ω.

5. Numerical examples

For the purposes of the numerical simulations only the Stokes problem will be considered, as
the full Navier-Stokes code was not finished at the time of writing the article. In this case the
weak formulation of the direct flow problem (see (6)) reads: find u ∈ V0(Ω) and p ∈ L2(Ω)
such that

aΩ (u, v)− bΩ (v, p) = 0 ∀v ∈ V0 ,

bΩ (u, q) = 0 ∀q ∈ L2(Ω) ,

u = u0 on Γin ,

u = 0 on ∂Ω \ Γout ,

(32)

the corresponding adjoint problem (see (13)) is

aΩ (v, w) + bΩ (v, q) = −aΩC
(u, v) ∀v ∈ V0 ,

bΩ (w, η) = 0 ∀η ∈ L2(Ω) ,

w = 0 on ∂Ω \ Γin−out ,

(33)

and finally the sensitivity formula (14) takes the simplified form

δΨ(u) = δDaΩ (u, w)− δDbΩ (w, p) + δDbΩ (u, q) . (34)

The equations (32)-(34) were discretized by the standard P1+/P1 finite elements, using P1 pres-
sure and P1 enriched with bubble functions velocity approximations.

The purpose of the examples shown below was to verify the shape sensitivities obtained by
our code and to see the effects of a domain shape perturbation on the objective function (7).

In the following, the actual units are not important and thus they will not be written explic-
itly; any consistent set could be used. Our test domain was a cylinder 0.1 long of the radius
0.02, whose longitudinal cut is shown in Fig. 2, with the control domain ΩC a smaller cylinder
embedded in the domain Ω, visualized as the missing elements in the Figure. The kinematic
viscosity ν was set to 12.5.

The initial geometry was then perturbed by a design velocity field ~Vpert satisfying (9) as
shown in Fig. 3. It was obtained by solving an auxiliary linear elasticity problem; the domain
parametrization introduced above was not used here.
We proceeded as follows:
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1. solve the direct problem (32) on the perturbed domain
ΩP := Ω + {~Vpert}x∈Ω ≡ {x + ~Vpert(x), x ∈ Ω} ,

2. compute the objective function Ψ(u) using (7) on the perturbed domain ΩP ,

3. compute the sensitivity w.r.t. −~Vpert using (34) on the perturbed domain ΩP ,

4. verify the sensitivity by evaluating the objective function on

Ω+ε := Ω + {ε~Vpert}x∈Ω , Ω−ε := Ω− {ε~Vpert}x∈Ω

and comparing δΨ(u) with

δΨ̄(u) :=
1

2ε

(
ΨΩ+ε(u)−ΨΩ−ε(u)

)
, (35)

5. solve the direct problem (32) on the original domain Ω,

6. and finally compute the objective function, as well as test the sensitivity w.r.t. ~Vpert on
the original domain Ω.

Domain Ψ δΨ δΨ̄ δΨ/δΨ̄ ~V

ΩP 0.4065 -0.11381941 -0.11389113 0.9993702 −~Vpert

Ω 0.3528 -0.06780651 -0.06780651 1. ~Vpert

Tab. 1. Fig. 4. ΩC .

Fig. 5. Adjoint problem, Ω.

The solutions of steps 1, 2 are shown in Figs. 6, 7. The quanti-
ties computed in the remaining steps are summarized in Table 1.
We can see that the analytical sensitivity agrees very well with
the sensitivity obtained by (35) for ε = 10−6. It’s sign sug-
gests that changing the shape of ΩP in the direction of −~Vpert

decreases the objective function Ψ(u) and indeed, it is lower for
the original domain Ω. Fig. 4 depicts the flow through the control
domain ΩC embedded in ΩP . Fig. 5 shows the adjoint problem
solution.
The sensitivity w.r.t. ~Vpert of the objective function for the original domain Ω is also negative
— it seems that, although the objective function ultimately increases in the direction of ε~Vpert,
see Tab. 1, there is a local minimum for some ε ∈ [0, 1]. Indeed, Tab. 2 proves that: Hav-
ing Ψ(Ω) = 0.35133, we have performed the step 4 for various ε and noted by ± whether the
objective functions on the perturbed domains Ω+ε, Ω−ε increased or decreased w.r.t. Ψ(Ω).
The remaining columns show the accuracy of the finite difference approximation of the sensi-
tivity δΨ — it is satisfactory already for ε = 0.01.
3 A little discrepancy of values in the two tables was caused by the different starting meshes which were stored in
a format not using the full double precision and thus introducing round-off errors.
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Overall the numerical experiments with various design velocity fields ~V show a very good
agreement of the analytical sensitivity formula (34) for the Stokes problem. In the examples
presented we used an artificially constructed design velocities; however, to be able to perform
the shape optimization, it should be parametrized as discussed in Section 4.. For real world
applications, using the full Navier-Stokes equations will be necessary.

Fig. 6. Direct problem solution, Ω. Fig. 7. Direct problem solution, ΩP .

ε Ψ(Ω+ε) : ± Ψ(Ω−ε) : ± δΨ δΨ̄ δΨ/δΨ̄

1.0 0.4047 : + 1.6464 : + -0.06780651 -0.62083869 0.1092176

0.5 0.3593 : + 0.5163 : + -0.06780651 -0.15705514 0.43173698

0.25 0.3473 : − 0.3912 : + -0.06780651 -0.08771283 0.77305118

0.1 0.3469 : − 0.3611 : + -0.06780651 -0.07090143 0.95634897

0.05 0.3485 : − 0.3554 : + -0.06780651 -0.06857715 0.9887624

0.01 0.3506 : − 0.3519 : + -0.06780651 -0.0678373 0.99954617

Tab. 2.

6. Conclusion

In this paper we presented sensitivity analysis for steady incompressible flow problems. The
shape sensitivity formulae were derived using the domain approach based on the material
derivative, so that computation of gradients of velocities on boundaries is avoided. This al-
lows for using lower order finite element approximation for achieving standard accuracy in the
design gradients with respect to usual comparison with the finite difference calculations. We
implemented the sensitivity procedures within our in-house code, however the testing was per-
formed and is presented for the Stokes problem only; to overcome this temporary restriction we
need to improve further our algebraic solver for the Navier-Stokes system.
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We have suggested to use the Free-Form Deformation (FFD) technique for manipulating
the design boundary and the mesh deformation at the same time (examples to be presented
at the conference). This approach enables to obtain in an easy way the design velocity fields
employed in evaluating the sensitivity formulae. As another advantage, such treatment is in-
dependent of the geometrical description of the “original” (initial) body, i.e. the surface of the
channel in our case. Moreover, we have developed further the FFD approach in the sense of
decomposing the design space (in 3D) into so-called sub-boxes which make possible to localize
the design changes with a reduced number of design variables. On the other hand, it requires
some more care regarding the continuity and smoothness constraints imposed on the design
variables. Therefore, further research will be focused in this respect, which may bring this tool
in industrial application (an engine exhaust piping).
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