RE-CALIBRATION OF THE METHODOLOGY DETERMINING BURST PRESSURE OF PIPE WITH SURFACE DEFECT.

M. Španiel, C. Novotný, M. Růžička¹

Summary: The paper documents re-calibration of the remaining load-carying capacity (RCMT) methodology assessed to determine limit pressure of pipeline with surface areal defect. It was done under research contract between RWE Transgas, a.s. and FME of CTU in Prague. 9 artificial defects that had been experimentally tested in past, were analysed and utilised as re-calibration resource.

1. Úvod

Předmětem příspěvku je rekalibrace metodiky výpočtu mezního tlaku potrubí dálkových plynovodů s plošným defektem, která byla provedena ve spolupráci s firmou RWE Transgas, a.s. Metodika (MVMT) předpokládá, že o plastickém kolapsu rozhoduje rozložení plastické deformace v místě plošného ztenčení stěny potrubí. Je použitelná za předpokladů: 1) Defekt je dostatečně velký v porovnání s tloušťkou stěny a má charakter plošné poruchy tloušťky stěny; 2) Materiál potrubí má velkou zásobu plasticity (tažnost nad 10%). Poměrná délka defektu $\Lambda = L_P/L_D$ -kritérium mezního stavu vycházející z délky plastické oblasti L_P a deformační vlny L_D-je vypočtena MKP jako funkce tlaku. Konfrontací s experimentálně stanovenými mezními tlaky je určena její mezní hodnota Λ_{LIM} . Metodika byla vyvíjena a testována na Ústavu mechaniky Strojní fakulty ČVUT v devadesátých letech minulého století [Gajdoš 2004] a její použitelnost byla negativně ovlivněna faktem, že podklady byly průběžně vyhodnocovány během celého výše zmíněného desetiletí. Relevantnost experimentů zůstává prakticky neměnná, ale výsledky získané na starších MKP modelech nejsou plně srovnatelné s dnešními. Hlavním cílem práce bylo revokovat starší modely experimentálně vyšetřovaných defektů, analyzovat je jednotným MKP aparátem na srovnatelných sítích a provést rekalibraci stávajících mezních hodnot Λ_{LIM} .

2. MVMT

Předpoklady platnosti metodiky formulované v úvodu plnou z představy o mechanismu porušení v důsledku nestabilního rozvoje plastické deformace. Přídavná ohybová napětí způsobená poruchou tloušťky stěny vedou v první etapě narůstání tlaku k vytváření liniového plastického kloubu, který obklopuje defekt. Ohybové změkčení stěny způsobuje její "boulení".

Narůstání a přerozdělování plastické deformace je v této etapě omezeno na oblast danou výše zmíněným plastickým kloubem, kterou budeme nazývat jádrem defektu. Je-li defekt dostatečně

¹ Ing. Miroslav Španiel, CSc., Ing. Ctirad Novotný, Prof. Ing. Milan Růžička, CSc. Strojní fakulta ČVUT v Praze, Technická 4, 166 07 Praha 6. tel. +420 224 352 561, email miroslav.spaniel@fs.cvut.cz

velký a hluboký, muže dojít k proplastizování jeho jádra a ke ztrátě stability ještě před počátkem plastizace okolí s neztenčenou stěnou. Častěji dochází ke zhroucení ve stavu, kdy i neztenčené části potrubí jsou již také na počátku plastického stavu.

MVMT funguje tak, že k poškozenému potrubí popsanému vlastními rozměry, geometrií poškození a pracovním diagramem materiálu je pomocí metody konečných prvků vypočtena závislost stavového parametru $\Lambda = \Lambda(p)$ na tlaku média, která slouží k přibližnému stanovení mezního tlaku řešením rovnice

$$\Lambda\left(p_{LIM}\right) = \Lambda_{LIM} \cdot \tag{1}$$

2.1. Definice stavového parametru poměrné délky defektu.

Parametr **poměrná délka defektu** A se opírá o pojem **plastické oblasti**, jehož smyslem je převést 3D oblast ve stěně potrubí na 2D oblast na povrchu válce. Má-li bod povrchu válce patřit do plastické oblasti, musí být plastizace² podél celé úsečky, ve které jím vedený radiální paprsek protíná stěnu potrubí, rovna event, vetší paž dané hodnota c

Pojem jádra defektu souvisí s vymezením oblasti, ve které probíhá plastizace a její redistribuce. Jádro defektu je identifikováno pomocí pole radiálního posuvu. Řada MKP analýz potvrdila skutečnost, že průběh radiálního posuvu podél površky trubky, která prochází oblastí defektu má charakter vlny ohraničené lokálními minimy (viz obrázek 2). Vzdálenost těchto minim určuje délku defektu L_D . Při vývoji metodiky byla zavedena délka jádra defektu L_C daná zmenšením délky defektu o dvojnásobek délky půlvlny průběhu radiálního posuvu na polonekonečné trubce při zatížení jejího okraje rovnoměrně rozloženou silou nebo momentem L_w .

Obrázek 1: Vyšetřeni plastické oblasti a její délky na povrchu trubky.

trubí, rovna event. vetší než daná hodnota ε_{LIM} (viz obr.1). *Délkou plastické oblasti* $L_P^{\varepsilon_{LIM}}$ se rozumí její maximální osový rozměr.

Obrázek 2: Definice jádra defektu.

$$L_C = L_D - 2L_w \,. \tag{2}$$

Definice plastické oblasti i jádra defektu slouží přímo k jejich stanovení z dat vypočtených MKP. Hodnoty $L_{P,i}$ a $L_{C,i}$ pro různé úrovně tlaku média p_i určují interpolaci závislost9 délky plastické oblasti $L_P(p)$ a délky jádra defektu $L_C(p)$ na tlaku média p.

² Mírou plastizace je akumulovaná intenzita plastických deformací ε_a

Kritériem dosažení mezního stavu je poměrná délka defektu definovaná jako

$$\Lambda(p) = \frac{L_P(p)}{L_C(p)},\tag{3}$$

která pro výpočtový mezní tlak p_{LIM} dosahuje mezní hodnoty Λ_{LIM} . Mezní poměrnou délku defektu Λ_{LIM} je třeba pro potrubí daného průměru, tloušťky stěny a materiálu stanovit experimentálně. Těleso s plošným defektem je tlakováno vodou až do destrukce, přičemž je zaznamenán experimentálně zjištěný mezní tlak p_{LIM}^{exp} . Současně je pomocí MKP vypočtena a určená závislost $\Lambda(p)$. Pro mezní poměrnou délku defektu odpovídající zkoumanému případu máme vztah

$$\Lambda_{LIM} = \Lambda \left(p_{LIM}^{exp} \right) \,. \tag{4}$$

3. Automatizace procedury predikce mezního tlaku

Praktická použitelnost metodiky byla snižována také vysokým podílem lidské práce při vyhodnocování výpočtů. Součástí projektu rekalibrace proto byl i vývoj programového aparátu MVMT. Celé vyhodnocení defektu od identifikace plastické oblasti až po určení závislosti $\Lambda(p)$ je implementováno jako skript v prostředí MKP systému ABAQUS v jazyce Python. Pro určení mezních hodnot Λ_{LIM} ze série experimentů na základě statistického zpracování byl vytvořen program v prostředí systému Origin Lab.

3.1. Vyšetření plastické oblasti.

Stanovení délky plastické oblasti spočívá ve vyšetření pole minim akumulované intenzity plastické deformace po tloušťce stěny $\varepsilon_{a,min}(x, z)$ na (rozvinutém) povrchu trubky (x je obvodová a z osová souřadnice).

Izočára pro danou hodnotu $\varepsilon_{a,LIM}$ v tomto poli ohraničuje plastickou oblast. Délka plastické oblasti je definována jako její maximální osový rozměr. Pole minim $\varepsilon_{a,min}(x, z)$ je interpolováno z hodnot ve zvolené množině bodů $[x_i; z_i]$ na povrchu trubky, které jsou vyšetřeny přímo z výsledků výpočtu MKP³. V minulosti byly vytvořeny dva aparáty pro vyhodnocení plastické oblasti, které pro interpolaci pole $\varepsilon_{a,min}(x, z)$ využívaly buď program *Gnuplot* nebo *Origin*. V obou případech musela být délka plastické oblasti odměřena ručně, což je jednak zdlouhavé, jednak to zanáší do vyhodnocení chyby. Nově vyvinutý

Obrázek 3: Stanovení délky plastické oblasti.

programový aparát řeší interpolaci pole $\varepsilon_{a,min}(x, z)$ vlastními prostředky a umožňuje tak i automatické stanovení izočar a délky plastické oblasti. Pro kontrolu současně vytváří grafickou reprezentaci plastických oblastí (viz např. obr. 3).

3.2. Stanovení délky defektu. Alternativní definice délky defektu.

Pole radiálního posuvu podél površky trubky v oblasti defektu se vyznačuje nemonotónním průběhem s maximy a minimy. Délka defektu se definuje jako vzdálenost mezi minimy, která

jsou v již neztenčené oblasti, ale nejblíže hranici geometrické poruchy.

Doposud se stanovení délky defektu provádělo ruční analýzou průběhů radiálního posuvu podél površek. V rámci rekalibrace MVMT byla tato operace naprogramována. Vzhledem k velké variabilitě variant musí být automaticky stanovená délka defektu kontrolována kvalifikovaným pracovníkem. Proto je součástí programu grafický výstup průběhů radiálních posuvů nad jednotlivými površkami (viz obr. 4).

Automatické vyhodnocování revokovaných výpočtů umožnilo prověřit alternativní definice délky defektu. Ve stá-

Obrázek 4: Stanovení délky defektu.

vajícím pojetí, jak bylo napsáno, je délka defektu definována jako vzdálenost dvou nejvzdálenějších minim deformační vlny na společné površce. Takto pojatá definice může v případě velkého segmentu vést k vyhodnocení minim blízko hranic segmentu a ne nad defektem. Alternativní definice délky defektu bere vzdálenost dvou minim s největším rozdílem minima a maxima na společné površce.

Příkladem stanovení délek defektu podle původní $(L_{D,lmax})$ i alternativní $(L_{D,dmax})$ definice je obrázek 4

- Na površce x = 0 mm je ze všech vyšetřovaných površek největší rozdíl $d_{max} = u_{r,max} u_{r,min0}$, a proto je právě ona definiční površkou pro délku $L_{D,dmax} = |z_{min1} z_{min0}|$ definovanou jako absolutní hodnota rozdílu poloh (osových souřadnic z) dvou výše definovaných minim.
- Na površce x = 95 mm je ze všech vyšetřovaných površek největší rozdíl $|z_{min1} z_{min0}|$, a proto je právě ona definiční površkou pro délku $L_{D,lmax} = |z_{min1} - z_{min0}|$ definovanou jako absolutní hodnota rozdílu poloh (osových souřadnic z) dvou výše definovaných minim.

Alternativní definice délky defektu. Délka defektu se obecně mění s narůstajícím tlakem. To souvisí se změnou tuhosti stěny v důsledku postupné plastizace. Tento jev vede v některých případech k nemonotónnímu průběhu kritéria Λ v závislosti na tlaku p. Zejména při nižších hodnotách ε_{LIM} dochází k poklesu kritéria ještě před dosažením mezního tlaku. Z tohoto důvodu byly implementovány další dvě alternativní definice délky defektu označované "lmax0", resp.,,dmax0". Podle nich se délka defektu nastaví při dosažení první plastické oblasti s nenulovou délkou (podle definic "lmax", resp.,,dmax") při tlaku p_0 a dále se s rostoucím tlakem nemění. Tyto čtyři alternativní definice délky defektu $L_{D,lmax}(p), L_{D,lmax0}(p) = L_{D,lmax}(p_0)$ $L_{D,dmax0}(p) = L_{D,lmax}(p_0)$ implikují odpovídající definice délky jádra defektu podle vztahu 2 a konečně i poměrné délky defektu podle 3

$$\Lambda_x^{\varepsilon_{LIM}}(p) = \frac{L_P^{\varepsilon_{LIM}}(p)}{L_{C,x}(p)}, \qquad \text{kde } x \in \{lmax, dmax, lmax0, dmax0\}$$
(5)

3.3. Stanovení $\Lambda_{x,LIM}^{\varepsilon_{LIM}}$ a statistické vyhodnocení. Stanovení $\Lambda_{x,LIM}^{\varepsilon_{LIM}}$ podle

$$\Lambda_{x,LIM}^{\varepsilon_{LIM}} = \Lambda_x^{\varepsilon_{LIM}} \left(p_{LIM}^{exp} \right) , \qquad \text{kde } x \in \{lmax, dmax, lmax0, dmax0\}$$
(6)

se komplikuje jak v případě nemonotónní závislosti $\Lambda_x^{\varepsilon_{LIM}}(p)$, tak i v případě, že výpočtový tlak nepřekročil destrukční p_{LIM}^{exp} ⁴. Zkušenosti získané v minulosti při vyhodnocování experimentálních a výpočtových podkladů byly využity při formulaci níže uvedených pravidel, která jsou základem procedury naprogramována v prostředí programu *Origin* v jazyce Origin C.

Základem strategie stanovení $\Lambda_{x,LIM}^{\varepsilon_{LIM}}$ je lineární interpolace funkce $\Lambda_x^{\varepsilon_{LIM}}(p)$ po jednotlivých intervalech. Pro každý interval je stanoveno Λ_x v průsečíku interpolované funkce s přímkou $p = p_{LIM}^{exp}$. Z těchto průsečíků se stanoví (pokud existuje) hodnota $\Lambda_{x,LIM}^{\varepsilon_{LIM}}$ interpolovaná, hodnota extrapolovaná z posledního intervalu a hodnota extrapolovaná z posledního lokálního maxima před p_{LIM}^{exp} .

- Pokud existuje interpolovaná hodnota
 - a závislost $\Lambda_x^{\varepsilon_{LIM}}(p)$ je monotónní alespoň v intervalu $\langle 0; p_{LIM}^{exp} \rangle$ je $\Lambda_{x,LIM}^{\varepsilon_{LIM}}$ rovno právě této hodnotě (viz např. křivku Λ_{dmax0} v obr. 5(a)).
 - a závislost $\Lambda_x^{\varepsilon_{LIM}}(p)$ není monotónní, je $\Lambda_{x,LIM}^{\varepsilon_{LIM}}$ stanovena jako poslední lokální maximum před p_{LIM}^{exp} (viz např. křivku Λ_{lmax} v obr. 5(a)).
- Pokud neexistuje interpolovaná hodnota je Λ^{ε_{LIM}}_{x,LIM} stanovena jako minimum extrapolace z posledního lokálního maxima a z posledního intervalu (viz např. křivky Λ_{lmax} a Λ_{dmax} v obr. 5(b)).

Obrázek 5: stanovení $\Lambda_{x,LIM}^{\varepsilon_{LIM}}$.

U každého defektu jsou pro všechna $\varepsilon_{LIM} \in \mathcal{E}$ (viz 8) určeny čtyři průběhy $\Lambda_x^{\varepsilon_{LIM}}(p)$ pro čtyři alternativní definice délky defektu (5). Z nich jsou aplikací (6) stanoveny mezní hodnoty Λ kritéria – $\Lambda_{x,LIM}^{\varepsilon_{LIM}}$.

5

⁴ Např. při ztrátě konvergence MKP výpočtu

'step'	'press'	'LDdiffmax'	'LDmax'	'LD0diffmax'	'LD0max'	'Lw'	'Lp'
13	10	910	915	910	915	165.01683	0
14	10.5	875	875	910	915	165.01683	0
15	11	850	855	910	915	165.01683	87.61288
16	11.5	835	860	910	915	165.01683	388.33223
17	11.78	835	860	910	915	165.01683	465.30339
18	12	835	865	910	915	165.01683	507.01738

'step'	'press'	'lambdiffmax'	'lambmax'	'lambdiffmax0'	'lambmax0'	'distcenters'
13	10	0	0	0	0	190
14	10.5	0	0	0	0	172.5
15	11	0.1685	0.16689	0.15107	0.14977	149.44616
16	11.5	0.76903	0.73275	0.66958	0.66385	59.49027
17	11.78	0.92145	0.87799	0.80229	0.79544	39.38591
18	12	1.00406	0.94776	0.87422	0.86675	34.59112

Tabulka 1: Příklad vyhodnoceného průběhu $\Lambda_x^{\varepsilon_{LIM}=0,02}(p)$ pro defekt *tp2000*.

Limitní hodnoty $\Lambda_{x,LIM}^{\varepsilon_{LIM}}$ jsou podrobeny statistickému zpracování odděleně pro defekty na potrubí DN 800 A DN 900. Výsledkem jsou střední mezní hodnoty $\Lambda_{x,LIM}^{\varepsilon_{LIM}}$ a směrodatné odchylky $\delta \Lambda_{x,LIM}^{\varepsilon_{LIM}}$ kritéria v závislosti na volbě ε_{LIM} . Původně směrodatná odchylka $\delta \Lambda_{x}^{\varepsilon_{LIM}}$ definovala míru přesnosti predikcí mezního tlaku.

3.4. Stanovení $p_{x,LIM}^{\varepsilon_{LIM}}$ a statistické vyhodnocení.

Stanovení $p_{x,LIM}^{\varepsilon_{LIM}}$ jako řešení rovnice 1

$$\Lambda_x^{\varepsilon_{LIM}}\left(p_{x,LIM}^{\varepsilon_{LIM}}\right) = \Lambda_{x,LIM}^{\varepsilon_{LIM}} \qquad \text{kde } x \in \{lmax, \, dmax, \, lmax0, \, dmax0\}$$
(7)

se komplikuje jak v případě nemonotónní závislosti $\Lambda_x^{\varepsilon_{LIM}}(p)$, tak i v případě, že $\Lambda_x^{\varepsilon_{LIM}}(p) < \Lambda_{x,LIM}^{\varepsilon_{LIM}}$ v celém intervalu výpočtových tlaků. Podobně jako při určování $\Lambda_{x,LIM}^{\varepsilon_{LIM}}$ byla naprogramována příslušná procedura v prostředí programu *Origin* v jazyce Origin C.

Základem strategie stanovení $p_{x,LIM}^{\varepsilon_{LIM}}$ je také lineární interpolace funkce $\Lambda_x^{\varepsilon_{LIM}}(p)$ po jednotlivých intervalech. Pro každý interval je stanoveno p_x v průsečíku interpolované funkce s přímkou $\Lambda = \Lambda_{x,LIM}^{\varepsilon_{LIM}}$. Z těchto průsečíků se stanoví (pokud existuje) hodnota $p_{x,LIM}^{\varepsilon_{LIM}}$ interpolovaná, hodnota extrapolovaná z posledního intervalu, hodnota extrapolovaná z posledního lokálního maxima a hodnota odhadnutá na základě maxima, pokud se maximum $\Lambda_x^{\varepsilon_{LIM}}(p)$ přiblíží kritériu $\Lambda_{x,LIM}^{\varepsilon_{LIM}}$ na 10%.

- Pokud existuje jediná interpolovaná hodnota
 - a současně neexistuje hodnota extrapolovaná z maxima před interpolovanou hodnotou, je $p_{x,LIM}^{\varepsilon_{LIM}}$ rovno právě jí (viz obr. 6(a)).
 - a současně existuje hodnota extrapolovaná z maxima před interpolovanou hodnotou, je $p_{x,LIM}^{\varepsilon_{LIM}}$ rovno menší z nich
- Pokud existuje více interpolovaných hodnot
 - a současně neexistuje hodnota extrapolovaná z maxima před největší interpolovanou hodnotou, je $p_{x,LIM}^{\varepsilon_{LIM}}$ rovno středu intervalu mezi minimální a maximální interpolovanou hodnotou (viz obr. 6(b)).

- a současně existuje hodnota extrapolovaná z maxima před největší interpolovanou hodnotou, je $p_{x,LIM}^{\varepsilon_{LIM}}$ rovno menší hodnotě ze středu intervalu mezi minimální a maximální interpolovanou hodnotou a extrapolované hodnoty.
- Pokud neexistuje interpolovaná hodnota
 - a absolutní maximum závislosti $\Lambda_{x}^{\varepsilon_{LIM}}(p)$ se přibližuje kritériu $\Lambda_{x,LIM}^{\varepsilon_{LIM}}$ na 10% je jako $p_{x,LIM}^{\varepsilon_{LIM}}$ určen bod tohoto maxima (viz obr. 6(d)).
 - jinak je vybrána menší z existujících extrapolovaných hodnot (viz obr. 6(c)).

Obrázek 6: Stanovení $p_{x,LIM}^{\varepsilon_{LIM}}$.

4. Výsledky rekalibrace.

Rekalibrace byla provedena na 6 defektech na potrubí DN 800, resp. 3 defektech na potrubí DN 900 (viz [Španiel 2005]). Byly vytvořeny nové MKP modely těchto defektů, byla provedena

jejich analýza "komerčním" MKP systémem *ABAQUS* a vypočtená data byla zpracována až do výběru optimálních hodnot kritéria mezního stavu Λ .

Rozměry plastické oblasti závisí na volbě mezní hodnoty intenzity plastické deformace ε_{LIM} , která je parametrem metodiky. Byla zvolena jednotná množina testovaných hodnot ε_{LIM}

$$\mathcal{E} = \{0,005; 0,01; 0,015; 0,02; 0,025; 0,03; 0,035; 0,04; 0,045; 0,05; 0,07\}$$
(8)

Při kalibraci se na množině n defektů \mathcal{L} s experimentálně stanoveným mezním tlakem pro každou hodnotu $\varepsilon_{LIM} \in \mathcal{E}$ stanoví odpovídající množina

$$\mathcal{L}_{x,\Lambda}^{\varepsilon_{LIM}} = \left\{\Lambda_{x,LIM}^{i,\varepsilon_{LIM}}\right\}_{i=1}^{n}$$

a její průměrná hodnota $\Lambda_{x,LIM}^{\varepsilon_{LIM}}$. Optimální hodnota ε_{LIM} byla v minulosti určována pro nejmenší rozptyl množiny $\mathcal{L}_{x,\Lambda}$. Nové programové vybavení umožnilo stanovit optimální ε_{LIM} pomocí simulované predikce mezních tlaků na množině defektů \mathcal{L} na základě střední kvadratické chyby

$$\delta p_{x,LIM}^{\varepsilon_{LIM}} = \sqrt{\frac{\sum_{i \in \mathcal{L}} \left(\Delta p_{x,LIM}^{i,\varepsilon_{LIM}}\right)^2}{n\left(\mathcal{L}\right)}} \tag{9}$$

a minimální $\Delta p_{x,min}^{\varepsilon_{LIM}}$, resp. maximální $\Delta p_{x,max}^{\varepsilon_{LIM}}$ odchylky predikovaných mezních tlaků

$$o\Delta p_{x,LIM}^{i,\varepsilon_{LIM}} = p_{x,LIM}^{i,\varepsilon_{LIM}} - p_{LIM}^{i,exp}$$
(10)

vybírané z množiny \mathcal{L} , která obsahuje $n(\mathcal{L})$ defektů. $p_{x,LIM}^{i,\varepsilon_{LIM}}$ je mezní tlak *i*-tého defektu z \mathcal{L} stanovený podle 7 pro danou alternativu délky defektu x. $p_{LIM}^{i,exp}$ je experimentálně stanovený mezní tlak *i*-tého defektu.

Na obrázcích 7–14 jsou pro oba jmenovité průměry (DN 800 i DN 900) grafy závislosti kritérií $\delta \Lambda_{LIM}$, δp_{LIM} , Δp_{min} , Δp_{max} pro všechny uvažované způsoby stanovení délky defektu L_D na volbě ε_{LIM} . Kritériem pro volbu ε_{LIM} způsobu stanovení délky defektu L_D je dosažení minimální hodnoty střední kvadratické chyby predikovaného tlaku $\delta p_{LIM} \rightarrow \text{min.}$

Obrázek 7: Závislosti Λ_{LIM} , $\delta\Lambda_{LIM}$, δp_{LIM} , Δp_{min} a Δp_{max} na ε_{LIM} . Trubka DN 800. Délka defektu je vyhodnocena podle *lmax*

Obrázek 8: Závislosti Λ_{LIM} , $\delta\Lambda_{LIM}$, δp_{LIM} , Δp_{min} a Δp_{max} na ε_{LIM} . Trubka DN 800. Délka defektu je vyhodnocena podle *lmax0*

Obrázek 9: Závislosti Λ_{LIM} , $\delta\Lambda_{LIM}$, δp_{LIM} , Δp_{min} a Δp_{max} na ε_{LIM} . Trubka DN 800. Délka defektu je vyhodnocena podle *dmax*

Obrázek 10: Závislosti Λ_{LIM} , $\delta\Lambda_{LIM}$, δp_{LIM} , Δp_{min} a Δp_{max} na ε_{LIM} . Trubka DN 800. Délka defektu je vyhodnocena podle *dmax0*

Obrázek 11: Závislosti Λ_{LIM} , $\delta\Lambda_{LIM}$, δp_{LIM} , Δp_{min} a Δp_{max} na ε_{LIM} . Trubka DN 900. Délka defektu je vyhodnocena podle *lmax*

Obrázek 12: Závislosti Λ_{LIM} , $\delta\Lambda_{LIM}$, δp_{LIM} , Δp_{min} a Δp_{max} na ε_{LIM} . Trubka DN 900. Délka defektu je vyhodnocena podle *lmax0*

5. Závěry.

Bylo analyzováno celkem devět defektů s experimentálně stanoveným mezním tlakem. Těchto devíti analýz bylo využito k rekalibraci a ověření metodiky pro stanovení mezního tlaku MVMT, vyvinuté v devadesátých letech minulého století ve spolupráci firmy Transgas a Strojní fakulty ČVUT v Praze.

Metodika MVMT byla rekalibrována pro potrubí DN 800 (ze šesti vzorků) a DN 900 (ze tří vzorků). Mezní hodnoty kritéria jsou v grafech 7(a) až 14(a). Přesnost lze posoudit na základě rozptylů dle grafů 7(b)–14(b). Střední kvadratická odchylka tlaků na potrubí DN 800 je nejmenší při ε_{LIM} = 0,03 a dosahuje hodnoty δ p = ±0,68 MPa. Odchylky tlaku jsou ohraničeny hodnotami Δ p_{min} = −1,26 MPa; Δ p_{max} = 0,78 MPa, způsob stanovení délky defektu je "*lmax*". Na potrubí DN 900 je nejmenší δ p = ±0,1 MPa, resp. Δ p_{min} = −0,15 MPa; Δ p_{max} = 0,07 MPa při ε_{LIM} = 0,045 a způsobu stanovení délky defektu "*dmax*". Rozptyly na potrubí DN 900 jsou menší proto, že soubor defektů byl menší a měl výrazně nižší variabilitu geometrií. Na základě těchto rozptylů lze konstatovat, že mezní tlaky stanovené podle MVMT leží v tolerančním pásmu ± 1 MPa.

Obrázek 13: Závislosti Λ_{LIM} , $\delta\Lambda_{LIM}$, δp_{LIM} , Δp_{min} a Δp_{max} na ε_{LIM} . Trubka DN 900. Délka defektu je vyhodnocena podle *dmax*

Obrázek 14: Závislosti Λ_{LIM} , $\delta\Lambda_{LIM}$, δp_{LIM} , Δp_{min} a Δp_{max} na ε_{LIM} . Trubka DN 900. Délka defektu je vyhodnocena podle *dmax0*

- 2. Všechny defekty byly analyzovány metodou konečných prvků jednotným programovým aparátem ABAQUS 6.4 na modelových segmentech se srovnatelnou geometrií a se srovnatelnou MKP sítí. Lze říci, že rozptyly jsou způsobeny heuristickou podstatou kritéria poměrné délky defektu a nepřesnostmi v popisu materiálu a v geometriích trubek i defektů. Další zvyšování věrohodnosti a spolehlivosti MVMT je možné jen pomocí dalších experimentů nebo změnou kritéria. Na druhé straně pro posouzení bezpečnosti přirozených defektů vůči provoznímu tlaku je stávající spolehlivost MVMT dostačující.
- 3. Významným výstupem provedené práce je programový aparát, který plně automatizuje rutinní práce spojené s aplikací MVMT, jež musely být doposud prováděny "ručně". Generuje však podklady pro rozhodování a kontrolu v grafické formě.
- 4. Díky automatizaci zpracování "surových" výsledků MKP analýz se podařilo testovat čtyři alternativní definice délky defektu. *lmax* definuje délku defektu jako vzdálenost dvou nejodlehlejších minim radiálního posuvu podél površky, kde je její hodnota maximální. *dmax* definuje délku defektu jako vzdálenost dvou minim podél površky, s maximálním převýšením. Definice *lmax0* a *dmax0* definují délku defektu konstantní v procesu zatěžování, rovnou hodnotám na počátku plastizace. U jednoduchých defektů dávají definice "lmax" a "dmax", resp. "lmax0" a "dmax0" stejné délky defektu, u složených defektů vyhovuje lépe

definice "lmax", resp. "lmax0" s tím, že je třeba průběhy radiálních posuvů kontrolovat vizuálně.

5. Vytvořený programový aparát zkracuje výpočet jednotlivého defektu z několika dnů na dobu do 15 hodin na běžně dostupném hardwaru. Celková doba zpracování může být ovlivněna složitostí geometrie při vytváření MKP sítě.

6. Poděkování

Tento výzkum byl financován RWE Transgas, a.s.

7. Literatura

[Gajdoš 2004] Gajdoš, L. et al. 2004: Structural Integrity of Pressure Pipelines, Transgas, a.s., Praha.

[Španiel 2005] Španiel, M. & Novotný, C. & Růžička, M. 2005: Rekalibrace a zpřesnění metodiky výpočtu mezního tlaku potrubí s plošným defektem. *Technická zpráva 2051/05/14*, FS ČVUT v Praze.

12 _