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In this paper, an approach to dynamic analysis based on the fuzzy set theory

is presented. The dynamic analysis uses the response spectra method where the material 

parameters are considered fuzzy, which results in mode shapes and natural frequencies 

with fuzzy distribution. The subsequent design requires knowledge of internal forces, 

which in this case, are also in the form of fuzzy numbers. The resulting fuzzy 

distribution of internal forces in the structural elements reflects the degree of 

uncertainty contained in the input material parameters. This approach is explained in 

an illustrative example. 

1. Introduction 

Concrete, as a convenient building material, inherently involves uncertainty about its 
composition, which is difficult to be eliminated completely, however, this uncertainty can be 
assessed by statistical, fuzzy, or other suitable tools. For design purposes, one may wish to 
conduct a statistical analysis, using the statistical characteristics of several measured events. 
In the case of earthquake, the measured data for each site of interest is not particularly dense, 
leaving the statistical characteristics with little relevance. On the other hand, the expected 
seismic load at a site can be alternatively expressed by the fuzzy sets, (Zadeh, 1965), which 
take into account the scarcity of seismic stations and the information about local sub-soil 
composition. 

In this paper, an approach to dynamic analysis based on the fuzzy set theory is presented as 
a pre-step of the classical stochastic dynamic analysis. The material parameters of reinforced 
concrete are considered to be fuzzy quantities with a given distribution, i.e. fuzzy numbers 
with a desired shape of the membership function, (Valliappan and Pham, 1993). The dynamic 
analysis is performed with help of the fuzzy arithmetic on the α-cuts, (Kaufman and Gupta, 
1985). The result of such an analysis is in the form of fuzzy numbers which compared with 
the stochastic approach is less expensive in terms of computation time and still it provides the 
designer with an idea of distribution of the sought quantity, (Kala, 2005). In order to further 
improve the computational efficiency, inspired by (Akpan et al., 2001), the concept of a 
surface response function, (Bucher et al., 1988; Rajashekhar and Ellingwood, 1993), is 
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utilized. This approach is demonstrated in an illustrative example of a 2D frame where the 
effect of uncertain material parameters transpires in corresponding distributions of natural 
modal shapes, natural frequencies of an analyzed two-dimensional frame. The results of the 
natural vibration analysis are then used in the investigation of structural vibration by the 
response spectrum. The methodology for application to seismic design is explained and the 
following procedure of reliability assessment is hinted. The question of how many α-cuts are 
necessary and how their number influences the result is also tackled.  

2. Fuzzy numbers and fuzzy arithmetic 

The uncertainty, which is present in input parameters, can be handled with help of the fuzzy 
set theory (Zadeh, 1965), where the uncertain quantities are defined in terms of fuzzy sets. 
Unlike in the classical set theory, the membership of an element to a fuzzy set includes the 
values between 0 and 1, where 0 means ”does not belong“ and 1 means ”definitely belongs“ 
to a fuzzy set. Usually, the fuzzy sets represent vague verbal evaluation. In cases when a 
fuzzy set represents a numeral, it is called a fuzzy number. 

Fuzzy numbers 

The notion of a fuzzy number arises from the experience of the everyday life when many 
phenomena which can be quantified are not characterized in the terms of absolutely precise 
numbers. 

Fig.1. Normal fuzzy number and its α-cuts. 

 Fuzzy numbers are fuzzy sets which are defined on the set of real numbers. Their 
membership function assigns the degree of 1 to the central, also called nominal, modal or 
mean, value and lower degrees to other numbers which reflect their proximity to the central 
value according to the used membership function. The membership function should thus 
decrease from 1 to 0 on both sides of the central value. Such fuzzy sets are called fuzzy 
numbers. An example of a fuzzy number is shown in Fig.1, where µ represents the 
membership function and a1 and a2 stand for two real numbers on the real axis. The intervals 
defined for a specific value of the membership function, e.g., α = 0.7, represent the so-called 
α-cuts. A fuzzy number can be equally expressed by either a nominal value and a membership 
function on each side of the nominal value or by a set of α-cuts. 

Fuzzy arithmetic 

A fuzzy arithmetic operation depends on the definition of a fuzzy number. In the cases when 
fuzzy numbers are defined by a set of α-cuts, the problem of fuzzy arithmetic is reduced to 
the well-known arithmetic operations on intervals, which are applied to each α-cut. In the 
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case of real-life problems, such as dynamic analyses based on the finite element method, an 
extensive number of arithmetic operations are necessary and the formulation in the above 
terms is relatively expensive. 

 To eliminate the drawback of the α-cut formulation, new techniques for solving fuzzy 
linear equation systems have been developed, e.g. presented in (Buckley and Qu, 1991). 
However, these techniques are not easily applicable to robust problems, such as the fuzzy 
dynamic finite element analysis. Therefore, another technique for reducing the large number 
of combinations, originally developed for other problems, e.g. statistical analysis, was 
exploited – the concept of the response surface function. 

3. Response surface function 

Fuzzy analyses, as well as stochastic analyses, suffer from non-occurrence of analytical 
solutions in the case of non-deterministic input data. The non-occurence of analytical solution 
requires application of a suitable numerical method which discretizes the problem and solves 
it numerically. In order to reduce the necessary number of computation runs, the concept of 
the response surface function has been used many times, (Bucher et al., 1988; Rajashekhar 
and Ellingwood, 1993). The basic idea of the response surface function is to approximate a 
response of a structure by a number of selected parameters, which depend on the selected 
input parameters. The relation between the input and the output parameters should be as 
simple as possible. The polynomial function in the form 

(1) 

is very popular. The superscript identifies an output parameter and n denotes the number of 
input parameters. The unknown coefficients a, b and c, can be obtained from, e.g. the least 
square method. 

4. Response of structure to seismic load 

In the case of known accelerograms, the response of a structure can be obtained by numerical 
integration of the equation of motion (Clough and Penzien, 1993; Bittnar and Šejnoha, 1996), 
which has the form  

(2) 

where M denotes the mass matrix, C stands for the damping matrix, K denotes the stiffness 
matrix, f(t) expresses the load vector and d(t) is the vector of the nodal displacements which 
are computed. t stands for time. For design purposes, an artificial accelerogram is provided by 
the standards. 
 Prior to the introduction of powerful computers, the response of a structure to seismic load 
was computed with the help of response spectra. This method was also used for our purposes 
to preliminary estimate the structural behavior, and so it is briefly described. 
 A single degree of freedom subjected to seismic loading can be described by the equation
  

(3) 
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where )(tv  denotes the relative displacement, )(tvg
&&  denotes the ground acceleration, ω

denotes the natural frequency, ξ  damping ratio and f  denotes the mode participation factor. 
The relative displacement can be expressed by the Duhamel integral 

(4) 

where τ  denotes the time of load application and small values of  ξ  (less than 0.1) are 

assumed. Let the ground acceleration )(τgv&&  be known and the damping ratio be estimated as 

const=ξ . Then, the relative displacement depends on the natural frequency and time. Let 

max)(ωv  denote the maximum value of the relative displacement for a particular natural 

frequency. The displacement response spectrum is defined by 

(5) 

In other words, the maximum values of the relative displacements computed from Eq.(4) are 
computed for all possible natural frequencies and they create a curve which is denoted as the 
displacement response spectrum. The displacement response spectra are, however, usually 
expressed in terms of the period rather than in the terms of natural frequencies. The period of 
natural vibration is related to the natural frequency by the known relationship 

(6) 

The pseudo-velocity spectrum is defined by 

(7) 

and the pseudo-acceleration spectrum is defined by 

(8) 

The response of a general structure to dynamic load can be formulated directly by the modal 
analysis. In that case, the system of the equations of motion is transformed to several single 
equations similar to Eq.(3), where the subscripts i have to be added. vi denotes the coefficient 
of linear combination of the i-the eigenmode (it expresses the influence of the i-th eigenmode. 
The maximum value of the coefficient vi is obtained from Sd or Sa/ωi2, where  iω  is the i-th 

natural frequency. 
The uncertainty in material parameters, described by fuzzy numbers, results in fuzzy 

natural frequencies and fuzzy eigenmodes. The response of a structure with uncertain 
parameters is therefore also uncertain. The total seismic response is then described by fuzzy 
numbers. The primal difference between the crisp and the fuzzy computation of seismic 
response with the help of the response spectrum is the fuzziness of the i-th period iT .

Therefore, the max)( ii Tv  are also described by fuzzy numbers. The total displacements are the 

results of summation of contributions from particular modes. 
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5. Fuzzy reliability concept 

The concept of reliability is traditionally connected with the probability evaluation, e.g. 
expressed by the reliability index, β, therefore, development of a novel reliability approach 
based purely on the fuzzy set theory is meaningful due to the necessity to revolutionize the 
notion of reliability which is already well-established, moreover, the reliability evaluation 
based on the fuzzy set theory cannot express the frequency of occurrence of an event in the 
sense known from the probability theory. 

On the other hand, combination of the common reliability evaluation with the fuzzy set 
theory helps to take into account the vagueness contained in the stochastic information, 
known as the fuzzy randomness. The result of such reliability assessment is in the form of the 
reliability index, β, with fuzzy distribution. This method is explained in (Möller and Beer, 
2004). However, this is not the objective of our work, since the primary objective in this 
paper is the preliminary analysis of a structure, which gives information of its possible 
behavior. We believe that it is reasonable to check first whether some event can occur at all, 
and once its occurrence is assured, it is desirable to evaluate the frequency of its occurrence, 
that means, to perform reliability assessment, which is due to heavy sampling much more 
computationally expensive. 

6. Preliminary assessment of structure - example 

As an example, the natural frequency analysis of a two-dimensional frame with four floors 
made of reinforced concrete is considered. Then, the possible distribution of internal forces in 
the frame is computed. Also, the possible distribution of a horizontal displacement of a joint 
is shown for an instance.  
 The overall height of the frame is 16 meters and the width is 5 + 5 meters. The dimensions 
of beams and columns are identical (0.5 x 0.5 m). It is assumed that the building was erected 
in four consecutive lifts. Each lift consists of placing concrete in three columns and in the 
beam which connects the upper ends of the columns. Therefore, it is further assumed that 
there are only four types of concrete whose composition can possibly differ. The influencing 
material parameters are the modulus of elasticity, E, and the density, ρ. E and ρ are fuzzy 
input parameters with nominal values of 30 GPa and 2500 kg/m3, respectively, which can 
change by ± 10 % and are represented by fuzzy numbers with a linear membership function 
(triangular fuzzy numbers). 
 For our illustrative purposes, we need 925 response surface functions to describe the first 
five natural vibration modes, i.e. a response surface function to express each natural 
frequency and the horizontal and vertical displacements in each joint (23 joints on each of the 
four floors) for each natural mode shape. In order to obtain sufficient input and output data for 
calculation of the coefficients of the response surface functions, Eq. (1), it was decided to take 
three values (minimum, modal value, maximum) for each material parameter, E and ρ, that 
means 423 ×  (=6561) independent runs of the eigenvalue problem. The specific form of Eq.(1) 
in this example was 

(9) 
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where E1, E2, E3, E4, ρ1, ρ2, ρ3 and ρ4 are input parameters and b1, …, b9 are output 
parameters. The computation is fully automated using the SIFEL package. The fourth mode 
shape is shown in Fig.2, where the dotted lines represent all possible envelopes of response, in 
other words, the minimum and maximum values, which correspond to the values obtained for 
α-cuts with α = 0. The finite element model of this frame discretizes each frame section 
(beam and column) by five beam elements. 

Fig.2. Fourth fuzzy mode shape of frame structure. 

In order to verify the necessary number of input data (the number of α-cuts) for obtaining the 
response surface functions, the surface response functions were also calculated for five 
values, corresponding to the α-cut values with α equal to 0, 0.5 and 1, but that already meant 

425 ×  (=390625) independent runs of the eigenvalue problem. The improvement was negligible 
compared to the computational effort. 

Fig.3. Distribution of displacements. 

 In the design of earthquake resistant structures, it is essential not to neglect any uncertainty 
as it may lead to an erroneous conclusion due to the dynamic simulation which may amplify 
such uncertainty beyond all limits. For those reasons it seems reasonable to express uncertain 

A
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numerical data in terms of fuzzy numbers and use them as such in analyses to cover all 
possible solutions. 

Fig.4. Distribution of normal forces. 

 Once the natural frequency analysis is finished, the acquired natural mode shapes are used 
for computation of the response of the RC frame to earthquake induced excitation, which is 
prescribed by a response spectrum given in a design standard. Following the procedure 
described above, the displacements, accelerations and internal forces are obtained. Fig. 3 
shows the resulting distribution of displacements composed from the five natural mode shapes 
multiplied by the respective mode participation factors. Fig.4, Fig.5 and Fig.6 show the 
possible distributions of the internal forces. For an instance, the fuzzy distribution of the 
horizontal displacement of the joint marked by A in Fig.3 is shown in Fig.7. Provided with 
these results, the designer can already know whether the computed quantity exceeds the 
allowed limits, and if yes, then to which extent. 

Fig.5. Distribution of shear forces. 
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 At this moment the spread of the quantity reflects the uncertainty in the material 
parameters. In the case the results are too far from the allowed limits, the structure needs to be 
redesigned. It should be noted that the computation of this simple example lasted for about 20 
minutes on an ordinary PC with the Pentium III processor. The real-life structures are much 
more complex and the 3-dimensional analysis is usually preferred. Bearing in mind that such 
computation can last for tens of hours, the advantage of this approach is obvious. The 
preliminary results obtained by the proposed method already provide the extra information on 
the effect of imprecision in the input data, compared with the deterministic analysis, and yet it 
is faster than the probability-based reliability-assessment, which should be better run at the 
stage of the design when it is sure that the structure would comply with the requirements of 
the design standards, or hygienic provisions. 

Fig.6. Distribution of bending moments. 

Fig.7. Horizontal displacement at joint A (design value). 

7. Conclusions 

This paper presents an approach to the preliminary assessment of structural behavior, which 
can serve as an efficient tool for verification that the structural response is within design limits 
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even if the input data contain imprecision or vagueness. The efficiency is caused by the use of 
only the maximum and minimum values of the input parameter for each α-cut, which in our 
case are the input values corresponding to the values at α equal to 0 and 1. The mean output 
values are obtained by the ordinary single deterministic run for mean input values. Once the 
result of this verification is positive, the ordinary reliability analysis, which is more 
computationally expensive, can be run. The advantage of the proposed approach is that at the 
design stage time usually spent on the trial-and-error process is spared and allows to spend 
more time on the subsequent ordinary reliability assessment, which is quite computationally 
demanding, once it should comprise all the relevant sampling. 
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