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Summary: A two-mass system consisting of a basic self-excited subsystem 
mounted on a foundation subsystem is investigated. Several alternatives of self-
excitation expressed by a function of velocity and deflection of the basic mass and 
several alternatives of foundation subsystem damping are considered. The 
efficiency of different damping components is analyzed and the conditions for the 
full vibration suppressing is formulated. 

1. Introduction 

Self-excited vibration represents an important phenomenon in physical and mechanical 
systems. There exist different sources of self-excitation, which results in different 
mathematical models describing important properties of the self-excitation. In most cases the 
self-excited vibration represents a danger for the save run of different systems and devices. 
Therefore, it is necessary to use means for vibration suppressing or, at least, for reducing the 
vibration intensity. 

There exists a lot of literature dealing with the analysis of self-excited systems and the 
basic theory can be found in any book on oscillatory systems. In most these books the 
attention is given, first of all, to the explanation of the excitation mechanism and to 
mathematical models (see e.g. [1], [2]). Less attention is given to different means for vibration 
suppressing. This is dealt especially in book [3]. The active means using parametric excitation 
represents quite a new approach (see [4] to [15]). 

One important group of these suppressing means is represented by additional subsystems 
(e.g. a tuned absorber or foundation mass) where the suppressing effect is due to the action of 
damping (e.g. absorber mass or foundation mass motion). It is evident that for the different 
types of self-excitation the efficiency of different types of damping can be even substantially 
different. 

This will be illustrated on a two-mass system where the upper mass m1 mounted on a 
spring having stiffness k1 is self-excited and this basic subsystem is attached to a foundation  

__________________________

*Ing. Dr. Aleš Tondl, DrSc., Zborovská 41, 150 00 Praha 5, Czech republic; e-mail: ales.tondl@volny.cz

National Conference with International Participation
ENGINEERING MECHANICS 2006
Svratka, Czech Republic, May 15 – 18, 2006

paper no.
199

1



subsystem characterized by mass m2 and spring having 
stiffness k2 (see Fig. 1). The deflections are y1, y2. The 
foundation mass motion is damped. Both self-excitation 
and the foundation damping will be described by 
different terms to analyze the effect of different terms. 
The analysis is limited to self-excitation described by the 
terms being functions of the velocity and deflection of 
mass m1 i.e. by functions of ., 11 yy&  In a similar way the 
foundation damping forces are described by the terms 
being functions of ., 22 yy&

2. Differential equations of motion 

Expressing formally the action of self-excitation as ),( 111 yyf &  and of the foundation damping 

),( 222 yyf &  the system in question is governed by the following equations:  

   ,0),()( 11121111 =+−+ yyfyykym &&& ε      (2.1) 

   .0),()( 2222221122 =++−− yyfykyykym &&& ε

We can suppose that all terms in the functions f1 and f2 comprise the corresponding velocities. 

Using the time transformation )/( 1111 mkt == ωτω  equations (2.1) get the form: 

   ,0),( 111211 =′+−+′′ yyFyyy ε       (2.2) 
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Equations (2.2) can be transformed into the quasi-normal form using transformation 

  ,211 xxy +=   22112 xaxay +=      (2.3) 

where 
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Note: It can be proved that (see [5]) the following relations are valid: 

,01 >a     ,02 <a     .21 Maa −=        (2.4) 

In this way questions (2.2) get the form: 

ematic representation
of the system.
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Seeking the single-frequency vibration the harmonic balance method can be used to determine 
the approximate solution. The solution with the first mode can be sought in the form: 

   ,cos11 τΩXx =    ,02 =x    ),0( 1 >X     (2.6) 

the solution with the second mode in the form: 

   ,01 =x    ,cos22 tXx Ω=    ).0( 2 >X     (2.7) 

Inserting these into equations (2.5) and comparing the coefficients at cos τΩ (considering 
above mentioned assumption on the form of functions F1, F2) the following results are 
obtained for the first and second mode vibrations: 

     ,1ΩΩ =  .2ΩΩ =     (2.8) 

When comparing the coefficients at sinΩτ the following relations are obtained for the first
mode: 
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              (2.9) 

Similarly for the second mode we obtain: 
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                     (2.10) 

In the further Section several alternatives of functions F1 F2 are analyzed. 

3. Analytical results

Using the approach described in the previous section and different types of self-excitation and 
foundation damping the following result are obtained. We shall suppose that all coefficients 
of the terms describing the self-excitation as well as of the foundation damping are positive.  
Let us start with the most used mathematical model:  van der Pol self-excitation. 

System I  .)(),( 1
2
1111 yyyyF ′+−=′ δβ       (3.1) 

The following alternatives of foundation damping are considered: 

Ia  ,),( 2222 yyyF ′=′ κ         (3.2) 

Ib  ,),( 2
2
2222 yyyyF ′=′ γ         (3.3) 

Ic  ),(sgn),( 22222 yyyyF ′+′=′ ϑκ       (3.4) 
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Alternativ  Ia 

Using the method of harmonic balance equation (2.9) get the form 
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From which follows: 
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Considering that a1/a2 < 0 for the real value of X1 reads: 
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Then relation 
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This is the condition for the full suppressing of the vibration with the first mode. Similarly the 
relation for X2 reads: 
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The condition for the full suppression of the second mode vibration reads:  
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Alternative Ib 

Using the same approach the following results are obtained: 
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We can see, considering that γδ )/( 21 aa−  and γδ )/( 12 aa−  are positive, that both X1 and X2

always exist although the progressive foundation damping reduces the vibration. 

Alternative Ic 

For this alternative equation (2.9) get the form 
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This can be written in the form 
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For the second vibration mode the following relation is valid: 
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The solution for X1 (or X2) can be achieved as section points of the curves )( 11 XΦ  and  

)( 12 XΦ  (respectively of )( 21 XΦ  and )( 22 XΦ ). The first curve is a straight line going 
through the origin and the second curve is an increasing function with increasing X1 (or X2). 
This for X1 (or X2) has a positive value. There exist three alternatives (see schematically in 
Fig. 2): No section points, two section points exist, the curves touch one another. 
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Fig. 2 Schematic representation of curves )2,1()(),( 21 =kXX kk ΦΦ ,

courses of the curves. 

In the first case no vibration with the corresponding vibration mode can occur. In the second 
case the section point with lesser X1 corresponds to unstable solution, the point with greater X1

to the stable solution. There exist two domains of attraction for initial conditions: one belongs 
to non-oscillatory solution (of course corresponding to certain mode) the other to the stable 
vibration. The third case represents such a boundary case between the previous ones. 

System II 

This does not belong to the class of self-excited systems characterized by the negative 
linear viscous damping. Here the self-excitation is described by 

   .)(sgn),( 111111 yyyyF ′+′−=′ κΘ            (3.14) 

Foundation damping is given by the following alternatives: 

(a)  ,),( 22222 yyyF ′=′ κ               (3.15) 

(b)     .)(sgn),( 22222 yyyF ′=′ ϑ              (3.16) 

Using again the same approach the following results are obtained: 
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We can see that in no case X1 or X2 can reach zero value; the vibration amplitude is reduced 
only due to the action of the positive foundation damping. 
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In opposite to the previous case a full suppressing of the vibration can be achieved. 

System III 

Here the term is also nonlinear but of the second order, i.e. the self-excitation is characterized 
as follows: 

   .),( 1
2
11111111 yyyyyyF ′+′−=′ δβ            (3.21) 

The foundation damping is characterized as follows:

(a)  )(sgn),( 22222 yyyF ′=′ ϑ ,             (3.22) 

(b)  22222222 ),( yyyyyF ′+′=′ δκ .             (3.23) 

Alternative IIIa 

For amplitudes X1 X2 the following relations are valid: 
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The situation is similar to that for Alternative Ic. 

Alternative IIIb 

Amplitudes X1, X2 can be obtained from relations: 

  (3.26) 

  (3.27) 
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For this alternative the conditions 
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must be met in order to get real amplitudes X1, X2. From the above results it follows that a full 
suppression can be achieved.  

4. Conclusion

A general rule can be formulated: A full suppression of self-excited vibration can be achieved 
when the foundation damping component has the same form as the negative component of the 
self-excitation of the basic subsystem and, furthermore, certain conditions are met. 

   A full suppression can also be achieved in the case of the nonlinear higher order form of the 
negative part of the self-excitation when certain conditions are met even if the terms of the 
foundation damping have not exactly the same character as the mentioned negative part of the 
self-excitation. 

   One aim of this contribution is to initiate further and deeper analysis especially as for the 
nonlinearly self-excited systems. 
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