

PROBABILISTIC EVALUATION OF UNSTABLE CRACK PROPAGATION IN PIPELINE USING SBRA METHOD

L. Václavek^{*}, P. Marek^{**}, Ľ. Gajdoš^{***}

Summary: The advances in computer technology and reliability theory allow for introduction of probabilistic reliability assessment methods, such as SBRA (Simulation-Based Reliability Assessment) in designer's work. Using a pilot example, the subject of the paper is a demonstration of the probabilistic safety assessment of a pressure pipeline containing a crack. The assessment procedure is briefly indicated and the results are discussed.

1. Úvod

Rozvoj teorie spolehlivosti a počítačové technologie dovolují uvažovat o zavedení pravděpodobnostního přístupu založeného na aplikaci simulačních nástrojů Monte Carlo do projekční praxe. Příspěvek stručně uvádí jednu z pravděpodobnostních metod SBRA (Simulation Based Reliability Assessment) dokumentovanou v knihách Marek et al. (1995, 2001 a 2003). Při aplikaci této metody jsou vstupní veličiny vyjádřeny neparametrickým rozdělením, funkce spolehlivosti FS = (R-S), kde R je referenční hodnota event. funkce a S je účinek zatížení, je analyzována simulační technikou Monte Carlo a vypočtená pravděpodobnost poruchy P_f je porovnána s návrhovou pravděpodobností P_d . Četné příklady aplikace této metody jsou ve výše uvedených publikacích.

Předmětem příspěvku je aplikace metody při posuzování bezpečnosti potrubí oslabeného podélnou povrchovou neprůchozí trhlinou. Deterministický posudek je porovnán s posudkem pravděpodobnostním. Výsledek má naznačit možný přínos pravděpodobnostního přístupu využívajícího simulační techniku oproti dosavadnímu pojetí.

2. Potrubí s podélnou povrchovou neprůchozí trhlinou, deterministický výpočet

V plynovodním potrubí DN900 z oceli X52, provozovaném při nominální hodnotě tlaku p = 6.0 MPa byla zjištěna podélná povrchová neprůchozí trhlina o povrchové délce 2c = 300 mm a hloubce a ≈ 8.0 mm. Vnější průměr potrubí D = 920 mm a nominální tloušťka stěny t = 12.0 mm. Tolerance tloušťky stěny t je ± 0.2 mm a uvažovaný úbytek tloušťky stěny

^{*} Ing. Leo Václavek, CSc.: VŠB-Technická univerzita Ostrava, Fakulta strojní, Katedra pružnosti a pevnosti; 17.listopadu 15, 708 33 Ostrava-Poruba; tel.: +420.597324555; e-mail: leo.vaclavek@vsb.cz

^{**} Prof. Ing. Pavel Marek, DrSc.: Ústav teoretické a aplikované mechaniky, Akademie věd České republiky; Prosecká 76/809, 190 00 Praha 9; tel.: +420.283882462; e-mail: marek@itam.cas.cz

^{***} Ing. Ľubomír Gajdoš, CSc.: Ústav teoretické a aplikované mechaniky, Akademie věd České republiky; Prosecká 76/809, 190 00 Praha 9; tel.: +420.286882121; e-mail: gajdos@itam.cas.cz

Obr. 1 Trubka s podélnou povrchovou neprůchozí trhlinou

v důsledku koroze během provozu plynovodu je 0.2 mm. Přesnost určení hloubky trhliny je \pm 0.5 mm. Vnitřní tlak plynu může během dne kolísat v mezích pmin = 5.0 MPa a pmax = 6.0 MPa. Geometrické parametry trhliny a trubky jsou obecně vyznačeny na obr. 1. Vzhledem ke značné povrchové délce 2c trhliny je z hlediska lomu nebezpečným místem nejhlubší místo čela trhliny, tj. bod A.

K ověření statických vlastností materiálu potrubí byla uskutečněna tahová zkouška ploché tyče odebrané v obvodovém směru trubky. Z trhacího diagramu byla vyhodnocena hodnota meze pevnosti $R_{\rm m} = 644$ MPa a meze kluzu $R_{\rm e} = 446$ MPa a byly určeny Ramberg-Osgoodovy konstanty $\alpha = 2.268$, n = 7.835 a $\sigma_0 = 446$ MPa v plném tvaru Ramberg-Osgoodova vztahu:

$$\frac{\varepsilon}{\varepsilon_0} = \frac{\sigma}{\sigma_0} + \alpha \left(\frac{\sigma}{\sigma_0}\right)^n,\tag{1}$$

kde

$$\varepsilon_0 = \sigma_0 / E \,, \tag{2}$$

a *E* je modul pružnosti v tahu.

Lomové vlastnosti materiálu potrubí byly ověřovány zkouškami lomové houževnatosti na čtyřech CT vzorcích na základě měření kritické hodnoty otevření trhliny δ_c . Naměřené hodnoty δ_c byly přepočteny na hodnoty J integrálu J_c podle vztahu

$$J_c = 2\delta_c R_p 0.2. \tag{3}$$

Pro kritickou hodnotu integrálu J_c vyšla střední hodnota 218.3 N/mm a směrodatná odchylka 16.0 N/mm, nejmenší hodnota J_c přepočtená z měření δ_c byla 200.7 N/mm, největší 240.8 N/mm.

J integrál pro podélnou poloeliptickou neprůchozí trhlinu v trubce, namáhané vnitřním přetlakem p, lze počítat např. podle metody GS, viz Gajdoš et al. (2004), podle následujícího vztahu:

$$J = \frac{K^2}{E'} \left[1 + \frac{2\alpha n}{(n+1)} \left(\frac{\sigma}{C\sigma_0} \right)^{n-1} \right],\tag{4}$$

kde α , n, σ_0 jsou již zmíněné Ramberg-Osgoodovy konstanty, C je tzv. plastický součinitel stísněnosti deformací, zde lze vzít C = 2, E' = E pro stav rovinné napjatosti (RN) a $E' = E / (1-v^2)$ pro stav rovinné deformace (RD), v je Poissonovo číslo. Faktor intenzity napětí K je daný vztahem:

$$K_{I} = \left[M_{F} + \left(E_{(k)} \sqrt{c/a} - M_{F} \right) \left(\frac{a}{t} \right)^{q} \right] \frac{\sigma_{t} \sqrt{\pi a}}{E_{(k)}} M_{TM} \,.$$
(5)

V rovnici (5) jsou použita následující označení:

$$M_F = 1.13 - 0.07 \left(\frac{a}{c}\right)^{0.5},\tag{6}$$

$$E_{(k)} = \int_{0}^{\pi/2} \sqrt{1 - \frac{c^2 - a^2}{c^2} \sin^2 \theta} d\theta , \qquad (7)$$

$$q = 1.6 + 3\left(\frac{a}{c}\right)^3 + 8\left(\frac{a}{c}\right)\left(\frac{a}{t}\right)^5 + 0.008\left(\frac{c}{a}\right),\tag{8}$$

$$\sigma_t = \frac{pD}{2t},\tag{9}$$

$$M_{TM} = \frac{\left(1 - \frac{a/t}{M_T}\right)}{\left(1 - a/t\right)},\tag{10}$$

kde

$$M_T = \sqrt{1 + 1.255\lambda^2 - 0.0135\lambda^4} \ . \tag{11}$$

Veličina λ v předchozím výrazu je

$$\lambda = c / \sqrt{Rt} \,, \tag{12}$$

kde *R* je střední poloměr trubky, tedy

$$R = (D - t)/2$$
. (13)

Po dosazení rozměrů potrubí D = 920 mm, t = 12 mm, tlaku p = 6 MPa, délky trhliny 2c = 300 mm, hloubky trhliny a = 8.0 mm, výše uvedených Ramberg-Osgoodových konstant α , n, σ_0 , modulu pružnosti v tahu E = 206 GPa a v = 0.3, vyjde J integrál podle (4) za předpokladu neměnné hodnoty C = 2

J = 216.6 N/mm	pro stav rovinné napjatosti,
J = 197.1 N/mm	pro stav rovinné deformace

V obou případech jsou to hodnoty menší, i když ne o mnoho, než střední hodnota přepočtené naměřené kritické hodnoty integrálu $J_c = 218.3$ N/mm.

Provedený výpočet nic neříká o tom, jaká je pravděpodobnost překročení kritické hodnoty J_c , tedy jaká je pravděpodobnost poruchy P_f .

3. Pravděpodobnost poruchy potrubí metodou SBRA vzhledem k překročení J_c

K výpočtu pravděpodobnosti poruchy potrubí s trhlinou, které je popsáno v předchozí kapitole 2, bude v této kapitole použita metoda SBRA. Metodu SBRA, viz Marek et al. (1995, 2001, 2003), lze použít k posudku spolehlivosti konstrukce. Stručně je možno tuto metodu charakterizovat takto:

- Vstupní veličiny, jako jsou zatížení, materiálové charakteristiky, geometrické charakteristiky průřezů, geometrické odchylky, strukturální nedokonalosti, konstrukční imperfekce, mohou být považovány za náhodně proměnné veličiny X_i.
- Rozdělení vstupních náhodných veličin jsou považována za omezená a jsou aproximována neparametrickými rozděleními, která mají vyjadřovat skutečné vlastnosti používaných veličin.
- Přímou simulací Monte Carlo jsou opakovaně generovány jednotlivé náhodné realizace vektoru vstupních veličin *x_i*.
- Pro každý vektor (x₁, ..., x_n) realizací vstupních veličin je pomocí vhodného výpočtového modelu g(X₁, ..., X_n) vypočítána odezva konstrukce na zatížení a vyhodnoceny příznivé a nepříznivé případy interakce výstupních veličin. Účinky zatížení S jsou srovnávány s referenčními hodnotami R (odolností konstrukce) pomocí funkce spolehlivosti FS, viz následující rovnice (14):

$$FS = R - S = g(X_1, X_2, ..., X_n).$$
(14)

Veličina FS je náhodně proměnná veličina. Program Anthill™, vyvinutý v rámci metody SBRA, umožňuje odhadnout pravděpodobnost poruchy P_f, tj. pravděpodobnost s jakou je FS < 0, z empirické distribuční funkce veličiny FS, nebo jako poměr

$$P_f = N_f / N \,, \tag{15}$$

kde N_f je počet simulací při nichž bylo FS < 0 a N je celkový počet simulací.

Posudek spolehlivosti spočívá ve srovnání vypočtené pravděpodobnosti poruchy P_f a návrhové pravděpodobnosti poruchy P_d. Konstrukce se považuje za spolehlivou, je-li P_f ≤ P_d. Návrhová pravděpodobnost poruchy P_d závisí na potřebné úrovni spolehlivosti pro konkrétní druh a účel konstrukce a souvisí s referenční hodnotou R (a tím i s výpočtovým modelem g(X₁, ..., X_n)). Může být udána normou, stanovena na základě dohody, expertního posudku, apod.

Ve smyslu výše uvedených zásad metody SBRA je dále pojato zadání úlohy a vypočtena pravděpodobnost P_f poruchy potrubí. Spolehlivost potrubí by bylo možno posoudit po stanovení návrhové pravděpodobnosti poruchy P_d .

Deterministicky vstupují do provedeného výpočtu průměr potrubí *D*, poloviční délka trhliny *c*, úplný eliptický integrál druhého druhu $E_{(k)}$ pro a = 8 mm a c = 150 mm, Poissonovo číslo v = 0.3 a součinitel C = 2 ve vzorci (4). Ostatní vstupní veličiny jsou považovány za náhodně proměnné.

Vstupním veličinám, které jsou považovány za náhodně proměnné veličiny, jsou přiřazeny omezené histogramy podle tabulky 1. Použity jsou histogramy uvedené v knihách Marek et al. (1995, 2001, 2003). Histogramy Normal2, N1-15, N1-20 jsou omezená normální rozdělení, histogram Uniform je rovnoměrné (rektangulární) rozdělení. Všechny vstupní, náhodně proměnné veličiny jsou považovány za vzájemně nezávislé.

4

Vstupní náhodně proměnné veličiny – nominální hodnoty, variabilita, přiřazené histogramy						
	Nom. hodnota	Variabilita	Histogram	Poznámka		
<i>t</i> 12 mm	12 mm	$12 \pm 0.2 \text{ mm}$	Normal2	Výrobní tolerance tloušťky stěny t		
	12 11111	0 až -0.2 mm	Uniform	Úbytek tloušťky <i>t</i> vlivem koroze		
а	8 mm	8 ±0.5 mm	Normal2	Přesnost určení hloubky trhliny a		
р	6.0 MPa	5 až 6 MPa	Uniform	Kolísání tlaku <i>p</i> v potrubí		
Ε	206 GPa	206 ±15 %	N1-15	Modul pružnosti v tahu E		
σ_0	446 MPa	446 ±20 %	N1-20	Konst. σ_0 v (1), mez kluzu $R_p 0.2$		
α	2.268	2.268 ±20 %	N1-20	Konstanta α v rovnici (1)		
n	7.835	7.835 ±20 %	N1-20	Konstanta n v rovnici (1)		
J_c	218.3 N/mm	200.7 až 240.8 N/mm	Uniform	Kritická hodnota integrálu J		

Tabulka 1 Vstupní náhodně proměnné veličiny

Jako výpočtový model $g(X_1, X_2, ..., X_n)$ v rovnici (14) jsou použity rovnice (4) až (13). Účinek zatížení *S* ve funkci spolehlivosti (14) je vypočítaná hodnota *J* integrálu podle (4) pro stav rovinné napjatosti a pro stav rovinné deformace. Referenční hodnotou *R* ve (14) je kritická hodnota J_c integrálu *J*, která je v tomto případě daná histogramem (Uniform) rovnoměrného rozdělení. Za krajní hodnoty jsou vzaty nejmenší a největší hodnoty *J* integrálu J_c přepočtené z hodnot naměřeného kritického otevření trhliny δ_c . Funkce spolehlivosti (14) má tedy v tomto případě tvar

$$FS = J_c - J . \tag{16}$$

Výsledky výpočtů pravděpodobnosti poruchy jsou shrnuty v tabulce 2. V obr. 2 (a) je histogram funkce spolehlivosti *FS* pro případ, kdy je *J* integrál podle (4) počítán pro konstantní (nominální) tlak v potrubí p = 6 MPa a stav rovinné napjatosti (RN), viz též odpovídající $P_f = 0.626$, řádek 1 v tabulce 2. Body 2D diagramu v obr. 2 (b) odpovídají interakcím vypočítaných hodnot *J* integrálu a náhodně generovaných hodnot kritické hodnoty *J* integrálu J_c . Červeně zbarvené plochy značí větší frekvenci interakcí. Šikmou čarou jsou odděleny oblasti *FS* > 0 vlevo (bezpečná) a *FS* < 0 vpravo (oblast poruchy).

Z tabulky 2 je patrná značná závislost pravděpodobnosti poruchy (viz rovnice (15), (16)), na tlaku v potrubí *p*. Výpočtem odhadnuté pravděpodobnosti poruchy P_f v řádku 1 tabulky 2 je možno považovat za pravděpodobnost poruchy za jeden den provozu. V daném okamžiku kolísá pravděpodobnost poruchy mezi hodnotami P_f v řádku 1 a řádku 3 tabulky 2.

Pravděpodobnost poruchy $P_f = P[(J_c - J) < 0]$						
Řádek	J pro stav RN	J pro stav RD	Tlak <i>p</i> v potrubí			
1	0.626	0.376	6 MPa (nominální)			
2	0.244	0.112	5 až 6 MPa (kolísá)			
3	0.017	0.003	5 MPa			

Obr. 2 (a) Histogram funkce spolehlivosti FS (b) 2D diagram interakcí Jc a J

Obr. 3 (a) Histogram J integrálu, stav RN (b) Histogram J integrálu, stav RD

V obr. 3 (a) je histogram vypočtených hodnot *J* integrálu pro stav rovinné napjatosti (RN) podle (4), se vstupními hodnotami uvedenými v tabulce 1, s výjimkou tlaku *p*, který byl vzatý v nominální hodnotě 6 MPa. Pro stav rovinné deformace je obdobný histogram v obr. 3 (b). Střední hodnota J = 233.7 N/mm pro stav RN je větší než střední hodnota $J_c = 218.3$ N/mm přepočtené naměřené kritické hodnoty integrálu J_c . Pro stav RD je střední hodnota *J* integrálu J = 212.7 N/mm, viz obr. 3 (b).

Pravděpodobnost poruchy potrubí P_f , odhadnutá výpočtem popsaným v této kapitole 3 je nepřijatelně vysoká.

4. Pravděpodobnost poruchy potrubí metodou SBRA vzhledem k překročení J_c(Q)

Výpočet pravděpodobnosti poruchy P_f uvedený v této kapitole 4 přihlíží ke změně lomové houževnatosti J_c v závislosti na bezrozměrném parametru stísněnosti deformací Q. Funkční závislost lomové houževnatosti $J_c(Q)$ na Q je

$$J_{c}(Q) = J_{c}(0) \left(1 - Q \frac{R_{e}}{\sigma_{CF}}\right)^{n+1},$$
(17)

viz například Shih & O'Dowd (1992), Kučera (2006). V rovnici (17) je σ_{CF} kritické napětí materiálu a R_e mez kluzu. Pro materiál potrubí uvádí Kučera (2002) hodnotu kritického napětí materiálu $\sigma_{CF} = 915$ MPa, variabilita hodnoty σ_{CF} byla odhadnuta ±10%, použitý histogram N1-10 je omezené normální rozdělení, viz Marek et al. (1995, 2001, 2003). Jako mez kluzu R_e je v dalším výpočtu použita hodnota σ_0 daná histogramem, viz tabulka 1. Pro výpočet parametru Q je v této kapitole použitý Gajdošem et al. (2004) uváděný aproximativní vztah

$$Q = 0.32a/t - 0.83. \tag{18}$$

V rovnici (18) je *a* hloubka trhliny, *t* je tloušťka stěny trubky, viz obr. 1 a tabulka 1.

Jak již bylo uvedeno, z naměřených kritických hodnot otevření v kořeni trhliny δ_c byly vypočteny hodnoty J integrálu J_c podle vztahu (3), kde jako $R_p0.2$ byla vzata nominální hodnota $\sigma_0 = 446$ MPa, viz tabulka 1. Hodnota lomové houževnatosti $J_c(0)$ je v dalším výpočtu považována za náhodnou veličinu danou histogramem, rovnoměrným (rektangulárním) rozdělením, jehož krajní hodnoty jsou nejmenší a největší hodnota vypočtená ze vztahu (3). Exponent *n* v rovnici (17) je náhodně proměnná veličina, viz tabulka 1.

Funkce spolehlivosti je dána rovnicí

$$FS = J_c(Q) - J , \qquad (19)$$

kde lomová houževnatost $J_c(Q)$ je vypočtena podle (17) a integrál J podle (4) pro tlak v potrubí p = 6 MPa, stejně jako v předchozí kapitole 3, viz obr. 3. Výpočtem získaný histogram funkce spolehlivosti FS je na obr. 4 (a), interakce veličin $J_c(Q)$ a J je na 2D diagramu, viz obr. 4 (b).

Z histogramu funkce spolehlivosti *FS* na obr. 4 (a) je zřejmé, že ve všech simulovaných případech je *FS* > 0, tzn. $P_f = 0$. To je zřejmé i z obr. 4 (b), kde se všechny interakce veličin $J_c(Q)$ a *J* vyskytují v oblasti $FS = J_c(Q) - J > 0$. Pokud platí podmínky za jakých je výpočet proveden, nedojde k nestabilnímu šíření trhliny. Respektování stísněností deformací na čele trhliny pomocí parametru *Q* vedlo k výrazně vyšší vypočtené lomové houževnatosti $J_c(Q)$, než je hodnota J_c uvažovaná v kapitolách 1 a 2, viz střední hodnota $J_c(Q)$ v obr. 5 (a). Histogram parametru *Q* je pro představu uveden v obr. 5 (b).

Obr. 5 (a) Histogram lomové houževnatosti $J_c(Q)$ (b) Histogram parametru Q

5. Souhrn a závěr

Předmětem příspěvku je úvodní příklad aplikace pravděpodobnostní metody SBRA využívající simulační techniku při posuzování bezpečnosti plynovodního potrubí s podélnou povrchovou neprůchozí trhlinou. Je připomenuta podstata deterministického přístupu k posudku a na příkladě je naznačena strategie pravděpodobnostního pojetí založeného na metodě SBRA. Porovnání deterministického a pravděpodobnostního posudku obrací pozornost k vlivu náhodně proměnných veličin ovlivňujících výsledek a k problematice, která by zasloužila pozornost v dalších studiích, včetně změny způsobu myšlení při přechodu od dosavadních metod k pravděpodobnostnímu pojetí posudku.

6. Poděkování

Projekt byl realizován za finanční podpory ze státních prostředků prostřednictvím

- a) Grantové agentury České republiky. Registrační číslo projektu je 103/04/1451.
- b) Ministerstva průmyslu a obchodu. Číslo projektu je FT-TA/091.

7. Literatura

- Gajdoš, Ľ., et al. (2004) *Structural Integrity of Pressure Pipelines*. Prague: Transgas, a.s., 2004. 234p. ISBN 80-86616-03-7.
- Marek, P., Guštar, M., Anagnos, T. (1995) Simulation-Based Reliability Assessment for Structural Engineers. Boca Raton, Florida: CRC Press, Inc., 1996. 365p. ISBN 0-8493-8286-6.
- Marek, P., Brozetti, J., Guštar, M., ed. (2001) Probabilistic Assessment of Structures using Monte Carlo Simulation. Background, Exercises and Software. Praha: Institute of Theoretical and Applied Mechanics, Academy of Science of the Czech Republic, 2001. 471p., CD-ROM attached. ISBN 80-86246-08-6.
- Marek, P., Brozetti, J., Guštar, M., Tikalsky, P.,ed. (2003) Probabilistic Assessment of Structures using Monte Carlo Simulation. Background, Exercises and Software. Praha: Institute of Theoretical and Applied Mechanics, Academy of Science of the Czech Republic. Second edition, 2003. 471p., CD-ROM attached. ISBN 80-86246-19-1.
- Shih, C.F. & O'Dowd, N.P. (1992) A fracture mechanics approach based on a toughness locus, in: Shallow Crack Fracture Mechanics, Toughness Tests and Applications. Cambridge, UK, 23-24 September 1992. International Conference. Abington Publishing, 1993. ISBN 1 85573 122 3.
- Kučera, J. (2006) *Úvod do mechaniky lomu II*. Ostrava: VŠB-Technická univerzita Ostrava, připraveno do tisku.
- Kučera, J. (2002) Úvod do mechaniky lomu I. Ostrava: VŠB-Technická univerzita Ostrava, 2002. 156s. ISBN 80-7078-862-3.