

# MODELOVÁNÍ KMITÁNÍ REAKTORU VVER 1000 METODOU DEKOMPOZICE

## V. Zeman, Z. Hlaváč<sup>1</sup>

**Summary:** The paper deals with the modelling of vibration and modal analysis of the nuclear WWER 1000 type reactor. This coupled multibody system is decomposed into subsystems modeled in the special configuration spaces of supporting subsystems. In comparison with original reactor models the spatial localization of the nuclear reactor fuel assembly and protection tubes, continuously mass distribution of beam type components and more accurate modelling of the linear stepper drives for actuation of control cassettes are respected. This new reactor mathematical model is aimed to the vibration analysis of internal components of the reactor excited by preasure pulsation generated by main circulation pumps. A model verification is performed by means of eigenfrequencies and eigenmodes.

## 1. Úvod

Důležitým provozním požadavkem reaktorů typu VVER je zajištění stability uložení jejich vnitřních komponent ve vertikálním směru, ve smyslu zachování kontaktu po celých stykových plochách. Dynamické účinky, jako jsou např. tlakové pulzace v prostoru mezi stěnou tlakové nádoby a nosným válcem, by mohly tuto stabilitu narušit ([Pečínka 2000]). Jak vyplynulo z modální analýzy izolovaného reaktoru a reaktoru v interakci s chladicími smyčkami v práci [Zeman a Hlaváč 1999], vlastní frekvence a vlastní tvary kmitání komponent reaktoru jsou jen velmi málo ovlivněny interakcí tlakové nádoby s chladicí smyčkou. Vnitřně buzený reaktor lze proto uvažovat jako izolovaný od smyček. Naopak modely vnitřních komponent i komponent řízení a ochrany reaktorů je nutné, oproti zjednodušeným diskrétním modelům aplikovaným pro nízkofrekvenční seizmické buzení např. v práci [Zeman a Hlaváč 1998], upřesnit. Cílem tohoto příspěvku je proto uvést novou metodiku modelování kmitání komponent reaktoru a aplikovat ji na reaktor VVER 1000 instalovaný v elektrárně Temelín.

Modelováním kmitání reaktorů typu VVER, jako jednoho ze subsystémů primárního okruhu, se zabývala celá řada prací souhrnně citovaných např. v závěrečné zprávě grantového projektu [Zeman a kolektiv 2002] a v dizertaci [Jedlička 2003]. Tyto modely byly určeny pro seizmickou

<sup>&</sup>lt;sup>1</sup> Prof. Ing Vladimír Zeman, DrSc., Doc. RNDr. Zdeněk Hlaváč, CSc.: Katedra mechaniky, Západočeská univerzita v Plzni, Univerzitní 22, 306 14 Plzeň, tel. +420 377 63 23 32, e-mail zemanv@kme.zcu.cz, hlavac@kme.zcu.cz

#### \_\_\_\_\_ Engineering Mechanics, Svratka 2006, #193

analýzu komponent a vyšetřování odezvy potrubních větví primárního okruhu na buzení vyvolané tlakovými pulzacemi generovanými hlavními cirkulačními čerpadly. Model reaktoru byl v těchto pracech sestaven za zjednodušujících předpokladů, jako např. centrovaného umístění kontinuí nosníkového typu, náhrady ochranných trub a pouzder pohonů diskrétními modely, zjednodušeného modelování komponent řízení a ochrany reaktoru a uvažováním některých komponent ve tvaru tuhých těles. Takový zjednodušený diskrétní model reaktoru vyhovuje přibližně pro analýzu kmitání tlakové nádoby a nosné konstrukce horního bloku reaktoru při nízkofrekvenčním (např. seizmickém) buzení.

## 2. Fyzikální struktura a dekompozice reaktoru



Obr.1 Dynamický model reaktoru

Pro vytvoření matematického modelu reaktoru (obr.1) je, vzhledem k jeho velmi složité struktuře, účelné jej dekomponovat na následující subsystémy:

• *tlakovou nádobu* s víkem (TN) uloženou na úrovni bodu A ve stavební šachtě;

2 \_

- nosný válec (NV) složený ze tří částí (NV1, NV2, NV3), z nichž dolní část je chápána jako tuhé těleso tvořené dnem nosného válce (DNV), ze stojáků kazet (SK) a pláště aktivní zóny (PAZ);
- aktivní zónu (AZ) tvořenou 163 palivovými soubory (PS);
- blok ochranných trub (BOT) tvořený deskami a pláštěm (BOT1) spojeným s opěrnou deskou (OD), soustavou 61 ochranných trub (OT1), 60 ochranných trub (OT2) a děrovanou skořepinou (DS);
- nosnou konstrukci (NK) horního bloku tvořenou třemi deskami (DK, ZD, DD) a montážní traverzou (MT), jež jsou navzájem provázány šesti trubkami (T) a tyčemi (TY) uvnitř trubek;
- soustavu 61 pouzder pohonů (PP) s ukazateli polohy (UP);
- soustavu 61 bloků elektromagnetů (BE) složených z přídržných (PEM), záchytných (ZEM) a tažných (TEM) elektromagnetů provázaných trubkami a umístěných vně pouzder pohonů;
- soustavu 61 vlastních *pohonů* tvořených mechanismy bloků zdvihání (BZ) a dělenou závěsnou tyčí (ZT) s regulačním orgánem (RO).

Subsystémy jsou navzájem provázány jednak diskretizovanými vazbami charakterizovanými translačními a rotačními tuhostmi v souřadnicových systémech rovnoběžných s globálním souřadnicovým systémem x, y, z, které mají počátky v centrech pružnosti vazeb a jednak vazbami typu ideálního vetknutí nebo ideální podpěry. Dekompozici reaktoru na 8 subsystémů a jejich zobecněným souřadnicím uvedeným v tab.1 – výchylkám středů hmotnosti tuhých těles a výchylkám uzlů (bodů diskretizace) kontinuí v příslušných konfiguračních prostorech – odpovídá struktura matic hmotnosti a tuhosti reaktoru znázorněná na obr.2.



Obr.2 Struktura matic matematického modelu reaktoru

| Komponenta      | Označ. | Počet  | Pořadí     | Zobecněné souřadnice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Konfigurační |
|-----------------|--------|--------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                 |        | stupňů |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | prostor      |
|                 |        | vol-   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
|                 |        | nosti  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| Tlaková nádoba  | TN     | 6      | 1 až 6     | $x, y, z, \varphi_x, \varphi_y, \varphi_z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Stavební     |
|                 |        |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | šachta       |
| Nosný válec     | NV     | 15     | 7 až 21    | $y_1, \varphi_{x1}, \varphi_{z1},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tlaková ná-  |
| (NV1+NV2+NV3)   |        |        |            | $x_2, y_2, z_2, \varphi_{x2}, \varphi_{y2}, \varphi_{z2},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | doba         |
|                 |        |        |            | $x_3, y_3, z_3, \varphi_{x3}, \varphi_{y3}, \varphi_{z3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| Aktivní zóna    | AZ     | 21     | 22 až 42   | $x_1,\ldots,x_7,y_1,\ldots,y_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Nosný válec  |
| (163*PS)        |        |        |            | $z_1,\ldots,z_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (dno)        |
| Blok ochranných | BOT    | 9      | 43 až 51   | $y_1, \varphi_{x1}, \varphi_{z1},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tlaková ná-  |
| trub            |        |        |            | $x_2, y_2, z_2, \varphi_{x2}, \varphi_{y2}, \varphi_{z2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | doba         |
| (BOT1+61*OT1+   |        |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| 60*OT2+DS+OD)   |        |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| Nosná           | NK     | 24     | 52 až 75   | $x_i, y_i, z_i, \varphi_{xi}, \varphi_{yi}, \varphi_{zi},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tlaková ná-  |
| konstrukce      |        |        |            | i = 1, 2, 3, 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | doba         |
| (DK+ZD+DD+      |        |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| MT+6*T+6*TY)    |        |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| Pouzdra pohonů  | PP     | 36     | 76 až 111  | $x_i, y_i, z_i, \varphi_{xi}, \varphi_{yi}, \varphi_{zi},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tlaková ná-  |
| (61*PP s UP)    |        |        |            | $i=1,\ldots,6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | doba         |
| Blok elmagnetů  | BE     | 8      | 112 až 119 | $y_1, y_2, y_3, y_4,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pouzdra po-  |
| (61*PEM+61*ZEM  |        |        |            | $\varphi_{y1}, \varphi_{y2}, \varphi_{y3}, \varphi_{y4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | honů         |
| +61*TEM)        |        |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| Vlastní pohony  | PO     | 18     | 120 až 137 | $y_1, \varphi_{y1}, y_2, \varphi_{y2},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tlaková ná-  |
| (61*BZ+61*ZT+   |        |        |            | $x_3, y_3, z_3, \varphi_{x3}, \varphi_{y3}, \varphi_{z3}, \varphi_{z3$ | doba         |
| 61*RO)          |        |        |            | $x_4, y_4, z_4, \varphi_{x4}, \varphi_{y4}, \varphi_{z4},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
|                 |        |        |            | $y'_{4}, y_{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |

Tab. 1 Označení a význam zobecněných souřadnic komponent reaktoru

Každý subsystém je modelován ve vhodně vybraném konfiguračním prostoru některého z "nosných" subsystémů. Nosným subsystémem pro NV, BOT, NK a PP je tlaková nádoba, pro AZ tlaková nádoba a nosný válec, pro BE a PO tlaková nádoba a pouzdra pohonů. Diagonální blokové submatice matic M a K reaktoru popisují pohyb jednoho nebo skupiny subsystémů při znehybněných nosných subsystémech. Vzájemné interakce subsystémů jsou v obr.2 vyjádřeny slabě vyšrafovanými mimodiagonálními bloky. Nevyšrafované bloky v obr.2 jsou nulovými maticemi.

Subsystémy Y=NV, BOT, NK a PP přispívají do matice hmotnosti reaktoru M "svými" submaticemi na pozicích XX, XY, YX a YY, přičemž subsystém X=TN je pro ně nosným subsystémem. Subsystémy Z=AZ, BE a PO přispívají do matice hmotnosti reaktoru submaticemi XX, XY, XZ, YX, YY, YZ, ZX, ZY, ZZ, přičemž subsystém X=TN je nosným subsystémem pro Y (u Z=AZ je Y=NV, u Z=BE nebo PO je Y=PP) a Y je nosným subsystémem pro Z. Matice hmotnosti reaktoru je symetrická, pročež postačuje určovat jen submatice v jejím blokovém horním trojúhelníku.

#### 3. Princip modelování dekomponovaného reaktoru

Pohyb *tuhých těles* (v obr.1 šedě zabarvených) v příslušném konfiguračním prostoru je popsán šesti souřadnicemi (u NV1 a BOT1 třemi). Palivové svazky jsou nahrazeny *nehmotnými nos-níky s hmotností soustředěnou do sedmi uzlů*. Jejich parametry byly identifikovány na základě experimentálně vyšetřených modálních veličin ([Zeman a Hlaváč 1998]). Ostatní komponenty (NV2, OT1, OT2, DS, T, TY, PP, BZ, ZT) byly uvažovány jako jednorozměrná kontinua. Kmitání stejných početných komponent PS, OT1, OT2 a subsystémů PP, BE a PO bylo uvažováno, vzhledem k velmi málo odlišným okrajovým podmínkám, pro každý typ jako soufázné. Model však, narozdíl od dosavadních zjednodušených postupů, respektuje prostorové uspořádání palivových souborů v aktivní zóně a ochranných trub OT1 a OT2 v bloku ochranných trub. Umístění lineárních krokových pohonů (subsystémy PP, BE a PO) na víku tlakové nádoby bylo uvažováno jako centrální.

Zcela nový přístup byl zvolen v *modelování kontinuí nosníkového typu*. Tato kontinua nejsou nahrazována nehmotnými nosníky se soustředěnou hmotností do bodů diskretizace, ale jejich příspěvek do modelu systému je uvažován spojitě. Princip vysvětlíme na vybraném subsystému PP. Pouzdro pohonu (obr.3) rozčleníme pomocí m uzlů na nosníkové prvky e = 1, 2, ..., m-1.



Obr. 3 Výchylky TN a uzlů prvku PP

Absolutní výchylky nosníkového prvku v lokálním souřadnicovém systému prvku

$$\boldsymbol{q}_{PP}^{(e)} = [v(0), \psi(0), v(l), \psi(l), w(0), \vartheta(0), w(l), \vartheta(l), u(0), u(l), \varphi(0), \varphi(l)]^T$$

v němž jsou odvozeny matice hmotnosti a tuhosti  $M_{PP}^{(e)}$  a  $K_{PP}^{(e)}$  prvku (viz (8.2.16) v monografii [Slavík, Stejskal a Zeman 1997]), vyjádříme pomocí zobecněných souřadnic  $q_{TN}$  nosného subsystému TN a zobecněných souřadnic uzlů *i* a *i* + 1, omezujících nosníkový element *e* subsystému PP v konfiguračním prostoru TN. Dostáváme tak tvar

$$\boldsymbol{q}_{PP}^{(e)} = \boldsymbol{T}_{PP,TN}^{(e)} \boldsymbol{q}_{TN} + \boldsymbol{T}_{PP} \boldsymbol{q}_{PP}^{(i,i+1)}.$$
(1)

6 \_\_\_\_\_ Engineering Mechanics, Svratka 2006, #193 \_\_\_\_

Zavedeme-li vektory deformací PP v uzlech (v obr.3 je vypuštěn index PP) jako

$$\boldsymbol{q}_{i,PP} = [x_{i,PP}, y_{i,PP}, z_{i,PP}, \varphi_{xi,PP}, \varphi_{yi,PP}, \varphi_{zi,PP}]^T,$$
(2)

dostáváme pak

$$\boldsymbol{q}_{PP}^{(i,i+1)} = \left[\boldsymbol{q}_{i,PP}^{T}, \boldsymbol{q}_{i+1,PP}^{T}\right]^{T}.$$
(3)

Kinetická a potenciální (deformační) energie PP potom je

$$E_{k}^{(PP)} = \sum_{e} \frac{1}{2} (\dot{\boldsymbol{q}}_{PP}^{(e)})^{T} \boldsymbol{M}_{PP}^{(e)} \dot{\boldsymbol{q}}_{PP}^{(e)}, \qquad (4)$$

$$E_{p}^{(PP)} = \sum_{e} \frac{1}{2} (\boldsymbol{q}_{PP}^{(i,i+1)})^{T} \boldsymbol{T}_{PP}^{T} \boldsymbol{K}_{PP}^{(e)} \boldsymbol{T}_{PP} \boldsymbol{q}_{PP}^{(i,i+1)} .$$
(5)

Po dosazení výrazu (1) do (4) a po úpravě dostaneme

$$E_{k}^{(PP)} = \frac{1}{2} \dot{\boldsymbol{q}}_{TN}^{T} \left[ \sum_{e} (\boldsymbol{T}_{PP,TN}^{(e)})^{T} \boldsymbol{M}_{PP}^{(e)} \boldsymbol{T}_{PP,TN}^{(e)} \right] \dot{\boldsymbol{q}}_{TN} + \frac{1}{2} \dot{\boldsymbol{q}}_{TN} \sum_{e} (\boldsymbol{T}_{PP,TN}^{(e)})^{T} \boldsymbol{M}_{PP}^{(e)} \boldsymbol{T}_{PP} \dot{\boldsymbol{q}}_{PP}^{(i,i+1)} + \frac{1}{2} \sum_{e} (\dot{\boldsymbol{q}}_{PP}^{(i,i+1)})^{T} \boldsymbol{T}_{PP}^{T} \boldsymbol{M}_{PP}^{(e)} \boldsymbol{T}_{PP} \dot{\boldsymbol{q}}_{PP}^{(i,i+1)}.$$
(6)

Z ekvivalencí

$$\frac{\partial E_k^{(PP)}}{\partial \dot{\boldsymbol{q}}_{TN}} = \boldsymbol{M}_{TN}^{(PP)} \dot{\boldsymbol{q}}_{TN} + \boldsymbol{M}_{TN,PP} \dot{\boldsymbol{q}}_{PP}, \qquad (7)$$

$$\frac{\partial E_k^{(PP)}}{\partial \dot{\boldsymbol{q}}_{PP}} = \boldsymbol{M}_{PP,TN} \dot{\boldsymbol{q}}_{TN} + \boldsymbol{M}_{PP} \dot{\boldsymbol{q}}_{PP}, \qquad (8)$$

kde  $\dot{\boldsymbol{q}}_{PP} = [\dot{\boldsymbol{q}}_{1,PP}^T, \dot{\boldsymbol{q}}_{2,PP}^T, \dots, \dot{\boldsymbol{q}}_{6,PP}^T, ]^T$  jest vektor zobecněných rychlostí všech uzlů PP, vyplý-vají submatice hmotnosti pouzder pohonů ve výsledné matici hmotnosti reaktoru  $\boldsymbol{M}$ . Zřejmě je

$$\boldsymbol{M}_{TN}^{(PP)} = \sum_{e} (\boldsymbol{T}_{PP,TN}^{(e)})^{T} \boldsymbol{M}_{PP}^{(e)} \boldsymbol{T}_{PP,TN}^{(e)} \in R^{6,6}, \qquad (9)$$

$$\boldsymbol{M}_{TN,PP} = \sum_{e} \widetilde{\boldsymbol{M}}_{TN,PP}^{(e)} \in R^{6,36} , \qquad (10)$$

kde jednotlivé sčítance (všechny typu 6x36) mají zaplněn pouze blok typu 6x12 mezi sloupci pořadových čísel 6e - 5 a 6e + 6 (e = 1, ..., 5). Zaplněné bloky přitom mají tvar

$$(\boldsymbol{T}_{PP,TN}^{(e)})^T \boldsymbol{M}_{PP}^{(e)} \boldsymbol{T}_{PP} \in R^{6,12}$$

Dále platí

V. Zeman, Z. Hlaváč

$$\boldsymbol{M}_{PP} = \sum_{e} \widetilde{\boldsymbol{M}}_{PP}^{(e)} \in R^{36,36}, \qquad (11)$$

kde jednotlivé sčítance (všechny řádu 36) mají zaplněn pouze blok řádu 12 mezi řádky a sloupci pořadových čísel 6e - 5 a 6e + 6 (e = 1, ..., 5). Zaplněné bloky přitom mají tvar  $T_{PP}^{T} M_{PP}^{(e)} T_{PP} \in R^{12,12}$ . Symetricky uložené mimodiagonální bloky matice hmotnosti reaktoru jsou navzájem transponované.

V horním uzlu i = 6 každého pouzdra pohonu je soustředěna hmotnost ukazatele polohy (UP) nahrazená tuhým tělesem o parametrech  $m_{UP}$ ,  $I_{UP}$  a  $I_{0,UP}$ . Kinetická energie tohoto tělesa je vyjádřena výrazem

$$\begin{split} E_k^{(UP)} &= \frac{1}{2} m_{UP} \Big[ \dot{x}_{TN} + a_{6,PP} \dot{\varphi}_{z,TN} + \dot{x}_{6,PP} \big)^2 + (\dot{y}_{TN} + \dot{y}_{6,PP})^2 + \\ & (\dot{z}_{TN} - a_{6,PP} \dot{\varphi}_{x,TN} + \dot{z}_{6,PP})^2 \Big] + \\ & + \frac{1}{2} I_{UP} \left[ (\dot{\varphi}_{x,TN} + \dot{\varphi}_{x6,PP})^2 + (\dot{\varphi}_{z,TN} + \dot{\varphi}_{z6,PP})^2 \right] + \frac{1}{2} I_{0,UP} (\dot{\varphi}_{y,TN} + \dot{\varphi}_{y6,PP})^2 \,. \end{split}$$

Z ekvivalence parciálních derivací  $E_k^{(UP)}$  podle  $\dot{q}_{TN}$  a  $\dot{q}_{PP}$ , analogicky k (7) a (8), vyplývají submatice  $M_{TN}^{(UP)}$ ,  $M_{TN,PP}^{(UP)}$  a  $M_{PP}^{(UP)}$ , jež doplní příslušné submatice spojitě rozložené hmotnosti pouzder pohonu.

Z ekvivalence

$$\frac{\partial E_p^{(PP)}}{\partial \boldsymbol{q}_{PP}} = \boldsymbol{K}_{PP} \boldsymbol{q}_{PP}$$
(12)

vyplývá submatice tuhosti pouzder pohonů  $K_{PP}$ , která má stejnou strukturu jako matice  $M_{PP}$ , zaměníme-li matice  $M_{PP}^{(e)}$  za  $K_{PP}^{(e)}$ . Protože pouzdra pohonů jsou v dolní části přírubami vázána šesti předepnutými šrouby k nátrubkům víka tlakové nádoby, respektujeme jejich poddajnost diskrétní vazbou. Ta doplní matici tuhosti  $K_{PP}$  na pozicích řádků a sloupců pořadových čísel 1 až 6 o diagonální matici vazby TN s uzlem 1PP, která bude míti tvar

$$\boldsymbol{K}_{TN,1PP} = \operatorname{diag}[k_{x,PP}, k_{y,PP}, k_{x,PP}, k_{xx,PP}, k_{yy,PP}, k_{xx,PP}].$$

Uvedenou metodiku modelování můžeme aplikovat i na ostatní subsystémy Y=NV, BOT, NK, pro které je tlaková nádoba také nosným subsystémem (X=TN). Podobně jako u pouzder pohonů vyplývá příspěvek subsystému Y do matice hmotnosti reaktoru z ekvivalence

$$\frac{\partial E_k^{(Y)}}{\partial \dot{\boldsymbol{q}}_X} = \boldsymbol{M}_X^{(Y)} \dot{\boldsymbol{q}}_X + \boldsymbol{M}_{X,Y} \dot{\boldsymbol{q}}_Y, \qquad (13)$$

$$\frac{\partial E_k^{(Y)}}{\partial \dot{\boldsymbol{q}}_Y} = \boldsymbol{M}_{Y,X} \dot{\boldsymbol{q}}_X + \boldsymbol{M}_Y \dot{\boldsymbol{q}}_Y.$$
(14)

Lokalizace submatic v matici hmotnosti reaktoru je dána jejich indexováním. Submatice s jedním indexem dole jsou symetrické a umístěné na diagonále a se dvěma indexy dole jsou umístěné mimo diagonálu na pozici určenou indexy, přičemž platí  $M_{Y,X} = M_{X,Y}^T$ . Horní

index v závorce představuje příspěvek modelovaného subsystému Y do submatice nosného subsystému (nosných subsystémů).

Metodiku modelování lze zobecnit i na subsystémy Z=AZ, BE, PO "nesené" subsystémem Y (pro AZ je Y=NV a pro BE a PO je Y=PP), který jest sám unášen tlakovou nádobou X=TN. Příspěvek těchto "dvojitě nesených subsystémů" do matice hmotnosti reaktoru vyplývá z ekvivalence

$$\frac{\partial E_k^{(Z)}}{\partial \dot{\boldsymbol{q}}_X} = \boldsymbol{M}_X^{(Z)} \dot{\boldsymbol{q}}_X + \boldsymbol{M}_{X,Y}^{(Z)} \dot{\boldsymbol{q}}_Y + \boldsymbol{M}_{X,Z} \dot{\boldsymbol{q}}_Z, \qquad (15)$$

$$\frac{\partial E_k^{(Z)}}{\partial \dot{\boldsymbol{q}}_Y} = \boldsymbol{M}_{Y,X}^{(Z)} \dot{\boldsymbol{q}}_X + \boldsymbol{M}_Y^{(Z)} \dot{\boldsymbol{q}}_Y + \boldsymbol{M}_{Y,Z} \dot{\boldsymbol{q}}_Z \,, \tag{16}$$

$$\frac{\partial E_k^{(Z)}}{\partial \dot{\boldsymbol{q}}_Z} = \boldsymbol{M}_{Z,X} \dot{\boldsymbol{q}}_X + \boldsymbol{M}_{Z,Y} \dot{\boldsymbol{q}}_Y + \boldsymbol{M}_Z \dot{\boldsymbol{q}}_Z \,. \tag{17}$$

O lokalizaci a vlastnostech submatic determinovaných indexováním platí shora uvedené vývody. Stačí pouze dodat, že výsledné submatice v bloku nosného subsystému na diagonále jsou dány součtem vlastní submatice a submatic všech jím nesených subsystémů. Tedy

$$\boldsymbol{M}_{TN}^{\Sigma} = \boldsymbol{M}_{TN} + \boldsymbol{M}_{TN}^{(NV)} + \boldsymbol{M}_{TN}^{(AZ)} + \boldsymbol{M}_{TN}^{(BOT)} + \boldsymbol{M}_{TN}^{(NK)} + \boldsymbol{M}_{TN}^{(PP)} + \boldsymbol{M}_{TN}^{(BE)} + \boldsymbol{M}_{TN}^{(PO)},$$

$$m{M}_{NV}^{\Sigma} = m{M}_{NV} + m{M}_{NV}^{(AZ)}\,, \; m{M}_{PP}^{\Sigma} = m{M}_{PP} + m{M}_{PP}^{(BE)} + m{M}_{PP}^{(PO)}\,.$$

Stejnou vlastnost mají i submatice mimo blokovou diagonálu. Platí tedy

$$m{M}_{TN,NV}^{\Sigma} = m{M}_{TN,NV} + m{M}_{TN,NV}^{(AZ)}, \ m{M}_{TN,PP}^{\Sigma} = m{M}_{TN,PP} + m{M}_{TN,PP}^{(BE)} + m{M}_{TN,PP}^{(PO)}.$$

Uvedenou metodikou jsou postupně zaplňovány bloky v globálních maticích hmotnosti i tuhosti reaktoru v obr.2.

#### 4. Modální analýza reaktoru

Model reaktoru je natolik rozsáhlý, že sestavování matic hmotnosti a tuhosti bylo ověřováno a testováno výpočtem modálních veličin postupně pro jednotlivé subsystémy a skupiny subsystémů. Pro ilustraci uvádíme v tab.2 nejnižší vlastní frekvence a stručnou charakteristiku jim přiřazených vlastních vektorů pro skupinu subsystémů TN, NV, AZ, BOT a NK o 75 stupních volnosti, skupinu subsystémů PP, BE a PO popisující komponenty řízení a ochrany reaktoru o 62 stupních volnosti a v tab.3 pro celý reaktor o 137 stupních volnosti.

| Skupina    | Pořadí | Vlastní   | Charakteristika vlastních tvarů kmitání        |  |
|------------|--------|-----------|------------------------------------------------|--|
| subsystémů | frek-  | frekvence |                                                |  |
|            | vencí  | [Hz]      |                                                |  |
|            | 1,2    | 3.31      | Příčné kmity PS (1.tvar)                       |  |
|            | 3,4    | 4.58      | Příčné kmity NK (1.tvar), slabě AZ             |  |
|            | 5      | 6.26      | Torzní kmity NK (1.tvar)                       |  |
| TN+NV+AZ   | 6,7    | 7.04      | Příčné kmity PS (2.tvar)                       |  |
| +BOT+NK    | 8,9    | 10.8      | Příčné kmity PS (3.tvar), NK a horiz. kmity TN |  |
|            | 10,11  | 12.77     | Příčné kmity PS (3.tvar), NK a horiz. kmity TN |  |
|            | 12     | 13.49     | Vertikální kmity TN,NV,AZ,BOT a NK ve fázi     |  |
|            | 13,14  | 15.99     | Příčné kmity NK (2.tvar)                       |  |
|            | 15     | 16.95     | Torzní kmity NK (2.tvar), TN                   |  |
|            | 16,17  | 18.29     | Příčné kmity PS (4.tvar), slabě NK             |  |
|            | 18     | 20.94     | Torzní kmity NK (2.tvar)                       |  |
|            | 19,20  | 21.35     | Příčné kmity NK (2.tvar) a PS (5.tvar)         |  |
|            | 1      | 4.16      | Vertikální kmity PO                            |  |
|            | 2,3    | 8.92      | Příčné kmity PP a BE ve fázi s PO              |  |
| PP+BE+PO   | 4,5    | 9.36      | Příčné kmity PP a BE v protifázi a PO          |  |
|            | 6      | 19.65     | Vertikální kmity BZ s HZT v protifázi s DZT    |  |
|            | 7,8    | 21.95     | Příčné kmity PO                                |  |
|            | 9      | 27.47     | Torzní kmity PO                                |  |

Tab. 2 Vlastní frekvence a charakteristika vlastních tvarů kmitání skupin subsystémů

Tab. 3 Vlastní frekvence a charakteristika vlastních tvarů kmitání reaktoru

| Pořadí | Vlastní   | Charakteristika vlastních tvarů kmitání          |
|--------|-----------|--------------------------------------------------|
| frek-  | frekvence |                                                  |
| vencí  | [Hz]      |                                                  |
| 1,2    | 3.31      | Příčné kmity PS (1.tvar)                         |
| 3      | 4.16      | Vertikální kmity PO                              |
| 4,5    | 4.58      | Příčné kmity NK(1.tvar), slabě AZ                |
| 6      | 6.26      | Torzní kmity NK (1.tvar)                         |
| 7,8    | 7.04      | Příčné kmity PS (2.tvar), slabě NK, PP s BE, PO  |
| 9,10   | 8.69      | Příčné kmity PP s BE ve fázi s PO, slabě AZ, NK  |
| 11,12  | 9.26      | Příčné kmity PP s BE v protifázi s PO            |
| 13,14  | 11.0      | Příčné kmity PS (3.tvar), TN, NK, PP s BE, PO    |
| 15,16  | 12.87     | Příčné kmity PS (3.tvar), TN, NK, PP s BE, PO    |
| 17     | 13.37     | Vertikální kmity TN, NV, AZ, NK v protifázi s PO |
| 18,19  | 15.99     | Příčné kmity NK (2.tvar)                         |
| 20     | 16.95     | Torzní kmity TN, NV, NK, PO                      |
| 21,22  | 18.3      | Příčné kmity PS (4.tvar), NK, PP s BE, PO        |
| 23     | 19.66     | Vertikální kmity BZ s HZT v protifázi s DZT      |
| 24     | 20.93     | Torzní kmity NK (2.tvar)                         |
| 25,26  | 21.2      | Příčné kmity PO a PP s BE                        |

## 5. Závěr

V příspěvku je uvedena metoda vytváření matematických modelů reaktoru. Metoda je aplikována na sestavení plně parametrizovaného modelu reaktoru VVER 1000 v ETE o 137 stupních volnosti, který byl podroben modální analýze. Přehledné grafické zobrazení vlastních tvarů kmitání v konfiguračních prostorech nosných subsystémů umožňuje operativně analyzovat podíl kmitání a velikost deformací jednotlivých komponent reaktoru i deformací diskrétních vazeb. Model je připraven pro citlivostní analýzu, naladění tuhosti vybraných vazeb na základě experimentálně vyšetřených vlastních frekvencí a po doplnění buzení tlakovými pulzacemi i pro analýzu stability uložení vnitřních komponent reaktoru.

# 6. Poděkování

Práce byla podpořena výzkumným záměrem MSM 4977751303 MŠMT České republiky.

# 7. Literatura

- [Pečínka 2000] Pečínka, L. 2000: Rozbor statické a dynamické stability uložení částí reaktorů VVER 440/213 EDU a návrh diagnostických opatření. Výzkumná zpráva DITI 300/95, ÚJV Řež.
- [Zeman a Hlaváč 1999] Zeman, V. Hlaváč, Z. 1999: Seizmická analýza primárního okruhu jaderné elektrárny a jeho komponent, in *Sborník Inženýrská mechanika '99* (C. Kratochvíl, V.Kotek a J. Krejsa ed.), Ústav mechaniky těles, VUT Brno, str. 295-300.
- [Zeman a Hlaváč 1998] Zeman, V. Hlaváč, Z. 1998: *Seizmická analýza reaktoru VVER 1000 s americkým palivem*. Výzkumná zpráva 102-07-98, ZČU Plzeň.
- [Zeman a kolektiv 2002] Zeman, V. a kol. 2002: *Modelování, dynamická analýza a optimalizace parametrů těleso-potrubních systémů s viskoelastickými tlumiči*. Závěrečná výzkumná zpráva grantového projektu GAČR 101/00/0345. Katedra mechaniky FAV ZČU Plzeň.
- [Jedlička 2003] Jedlička, Z. 2003: Modelování a seizmická analýza rozsáhlých tělesopotrubních systémů s frekvenčně závislými parametry. Dizertační práce, ZČU Plzeň.
- [Slavík, Stejskal a Zeman 1997] Slavík, J. Stejskal, V. Zeman, V. 1997: Základy dynamiky strojů. Vydavatelství ČVUT Praha.

10