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Summary: The contribution deals with the straight sandwich bar element derived 
by new nonincremental full geometric nonlinear approach. We assume a two-
node straight sandwich composite bar finite element with three layers of double 
symmetric rectangular cross-section area. The homogenisation of the material 
properties is made for polynomial variation of elasticity modulus and polynomial 
variation of constituent´s volume fraction at the top and bottom layers. Stiffness 
matrix of the composite bar contains transfer constants, which accurately 
describe the polynomial uni-axial variation of effective Young´s modulus. In the 
numerical experiments different mixture rules have been considered for 
calculation of the effective longitudinal elasticity modulus of the composite 
(FGM´s) bar. The results obtained will be compared with solid element analysis 
in the ANSYS simulation programme. 
 

1. Introduction 
The composite structures (e.g. laminate, sandwich structures, or FGM´s) are often used in 

engineering applications. Their FE analyses require creating very fine mesh of elements even 
for relatively small sized bodies, what increases computational time, particularly in nonlinear 
analyses. Macro-mechanical modelling of the composites is based on material properties 
homogenisation.  

The simplest mixture rules, which determine average effective material properties, are 
based on the assumption that the composite material property is the sum of the material 
properties of each constituent multiplied by its volume fraction. To increase the accuracy of 
the composite material properties calculation the new homogenisation techniques and the 
improved mixture rules have been applied [2,4,6]. Recently application of the multiscale 
computation is prevails [1,5]. 

In this contribution we deal with the straight sandwich bar element intended to perform 
nonincremental full geometric nonlinear analysis. 

We assume a two-node straight sandwich composite bar finite element with double 
symmetric rectangular cross-section area (Figure 1). Debonding of the layers is not 
considered.  

The homogenisation of the material properties is made for three layered sandwich bar with 
constant material properties of the middle layer and polynomial variation of the effective 
elasticity modulus and volume fraction of fibre and matrix at the top/bottom layer (Figure 1). 
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To derive of the bar element matrices, the effective longitudinal elasticity modulus have 
been considered [9,10]. The uni-axially polynomial variation of fibre elasticity modulus  Ef  
and the matrix elasticity modulus  Em  is given as polynomials 

 ( ) ��
�

�
��
�

� +== �
=

q

k

k
EfkfiEfif xExExE

f
1

1)( ηη   

 ( ) ��
�

�
��
�

� +== �
=

q

k

k
EmkmiEmim xExExE

m
1

1)( ηη  .  

The fibre  vf   and matrix  vm  volume fractions of the constituents are chosen by expressions 
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The effective longitudinal elasticity modulus is then given by 

 EL(x) = vf(x) Ef(x) + vm(x) Em(x) . (1) 

The bar element with varying stiffness is loaded in linear elastic load state. The effective 
longitudinal elasticity modulus changes as the polynomial 
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where  ELi = vfi Efi + (1 - vfi)Emi  is the effective longitudinal elasticity modulus at node  i  and 
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is the relation for longitudinal effective elasticity modulus. 
In this contribution a new approach to evaluation of equlibrium equations suggested by 

Murín [7] is presented. In this solution no linearisation of the variation of Green-Lagrange 
strain tensor is used. Thus we can obtain the exact nonlinear nonincremental formulation of 
the element stiffness matrices. When total Lagrangian formulation is used, nonlinearised 
equations can be derived from the equlibrium of internal and external work 
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written in conventional notation. After implementation of correspondent approximation of the 
displacement functions kiki uu φ=  we can modify the equation (4) for FEM requirements to the form 
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Now we have in (5) a basic relation, which can be used for an arbitrary finite element 
derivation. 



 

2. The bar element with varying stiffness 
If the concept of transfer functions and constants published by Rubin [8] is used in the 

derivation of the stiffness relation, we obtain local nonlinear stiffness matrix of the element 
for linear elastic material.  

Stiffness matrix of the composite bar contains transfer constants, which accurately describe 
the polynomial uni-axial variation of the effective Young´s modulus. After substitution of the 
new straight bar shape functions 
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into (5), the nonlinear stiffness matrix of the element has the following form 
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 are the transfer constants for 

elastic loading case and  10 +−=
L

uu ikλ   is the stretching. These transfer constants can be 

computed by using simple numerical algorithm published by Kutiš and Murín [3]. 
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Figure 1: Symmetric sandwich bar element with variation of stiffness in initial state 

Then the internal force in the bar element can be calculated using the formulae 
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Final, the resulting system of nonlinear equations of the type  K u = F  is usually solved 
using Newton-Raphson method. In this solution process, the full tangent stiffness matrix was 
expressed by 
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3. Numerical experiments 

In the numerical experiments the accuracy and efficiency of the new nonincremental 
geometric nonlinear bar element equations with varying of effective material properties was 
examined. We assume a three layered two-node sandwich bar with double symmetric 



 

rectangular cross-section (Figure 1). As a typical example of geometrically nonlinear 
behaviour the three-hinge mechanism was analysed (Figure 2).  
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Figure 2: Von Mises bar element structure 

Two different approaches published in [9,10] and [4] have been considered for calculation 
of the effective longitudinal elasticity modulus of the composite (FGM´s) bar with both 
polynomial variation of constituent´s volume fraction and polynomial longitudinal variation 
of the elasticity modulus.  
 

 
Figure 3: ANSYS model with 3000 solid elements to compare against our approach 

 
The elasticity modulus of the faces (layers 1 and 3 in Figure 1) is described by polynomials 
E1(x) and E3(x). Elasticity modulus of the core E2(x) (layer 2) is constant. These material 
properties were used to compare our results with solution in ANSYS. 
To obtain variation of the effective longitudinal elasticity modulus we are using extended 
mixture rules (labeled as MR) [9,10] and improved homogenisation techniques described by 
Love and Batra (LB) [4]. In addition we assume polynomial variations of the component’s 
volume fraction given by expressions vf(x) = 0,5(1 + 6x) for the fibre volume fraction and 
vm(x) = 1 – vf(x) = 0,5(1 - 6x) for the matrix volume fraction. 
After implementation of above mentioned homogenisation procedures we have obtained the 
effective longitudinal elasticity modulus for the new bar element, summarized in Table 1. 
To examine the accuracy of the new bar element the software Mathematica was used.  
 
Table 1: Variation of elasticity moduli used in numerical examples 

 
extended mixture rules 

(Murín [9,10] - MR) 
[GPa] 

improved mixture rules 
(Love and Batra [4] - LB) 

[GPa] 
solid element 

model in 
ANSYS 

E1(x) = E3(x) = 327,5 + 435x 
E2(x) = 255 

E1(x) = E3(x) = 320,4075 + 478,68x + 40,77x2 
E2(x) = 255 

new bar 
element EL(x) = 269,5 + 87x EL(x) = 268,0695 + 95,736x + 8,154x2 

 
In all numerical examples the following geometric parameters have been used (Figures 1 
and 2) used:  L0 = 0,1 m,   α0 = 10º 

A0 = 0,01x0,01 m2,  t = 0,001 m. 



 

Results of both, ANSYS and new bar element solutions are presented in two graphs. First 
graph shows relation between common hinge displacement vs. axial force(Figures 5). Second 
graph shows relation between common hinge displacement vs. global reaction (Figures 6). 
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Figure 5: Common hinge displacement vs. global reaction 
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Figure 6: Common hinge displacement vs. axial force 

 
 



 

4. Conclusion 
The results of numerical experiments are presented in this contribution using the above 

mentioned mixture rules. The obtained results are compared with solid analysis in the ANSYS 
simulation programme. Findings show good accuracy and effectiveness of this new finite 
element. Difference between ANSYS and new element results are less then 3,2% for the 
global reaction and 4,5% for axial force. The results obtained with this element do not depend 
on the mesh density. 
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