
HIGH ORDER GEOMETRICAL AND FUNCTIONALDISCRETIZATION FOR THE NAVIER{STOKESEQUATIONSB. Horeni�, Z. Chara �
Summary: The auray of numerial solution of uid dynami tasksdepends on both the geometrial and funtional disretization. The paperdeals with an appliability of high order methods for geometrial as wellas funtional approximations. Usefulness of this approah is demonstratedon seleted examples.Geometrial disretizationGeometrial disretization using the linear elements (with the straight edges in 2D geometryor the planar faes in 3D one) subjets to some restritions. A dense mesh is required in aneighborhood of the urved walls even if a solution is onsiderably smooth. The smoothlyurved walls an be modeled with the straight edges (2D ase) or the planar faes (3D ase)with seond{order auray. To improve the auray, a high order approximation of theurved walls is required.We now use the mapping of plane u; v to plane x; y in the formr(x; y) = Rm =Xi riupivqi = r0 + r1u+ r2v + r3uv + : : : ; (1)where R is a set of onstant vetorsR = [r0; r1; r2; r3; : : :℄ : (2)Jaobian is given byD = (�r=�u� �r=�v) Æ k = [�r=�u; �r=�v℄= Xi;j [ri; rj℄ piqju(pi+pj�1)v(qi+qj�1) : (3)�Institute of Hydrodynamis Aademy of Sienes of the Czeh Republi, Pod Patankou 5, 16612Prague 6, Czeh Republi
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Figure 1: Quadrati mapping of a standard triangle.With a simple algorithm it is possible to rewrite the Jaobian to the formD = Dm = D0 +D1u+D2v +D3uv + : : :+Diupivqi + : : : : (4)For a linear mapping it follows thatr(x; y) = r0 + r1u+ r2v ; (5)the Jaobian is a simple salar onstant D0D = D0 = (r1 � r2) Æ k = [r1; r2℄ : (6)For a quadrati mapping (Fig.1)r(x; y) = r0 + r1u+ r2v + r3uv + r4u2 + r5v2 (7)we obtain D = D0 +D1u+D2v +D3uv +D4u2 +D5v2 ; (8)where D0 = [r1; r2℄ ;D1 = [r1; r3℄ + 2 [r4; r2℄ ;D2 = 2 [r1; r5℄ + [r3; r2℄ ;D3 = 4 [r4; r5℄ ;D4 = 2 [r4; r3℄ ;D5 = 2 [r3; r5℄ : (9)Mapping of an order n has (n + 1)(n + 2)=2 oeÆients and its orresponding Jaobiann(2n�1) oeÆients. Some restrited mappings are useful. For example a bilinear mappingr(x; y) = r0 + r1u + r2v + r3uv transforms a standard triangle with verties (0; 0), (1; 0)and (0; 1) to a ommon triangle with two straight edges and one urvilinear edge, or unitsquare with verties (0; 0), (1; 0), (1; 1) and (0; 1) to a ommon quadrilateral.



Funtional disretizationThe inreasing of a polynomial degree of funtional disretization improves the quality ofthe smooth solution. Using an orthogonal basis will leave out an inversion of the massmatrix. Another, perhaps more important, advantage, is that an orthogonal basis makesthe modi�ation of a polynomial degree trivial [17℄. In the following a proess, how tosequentially introdue a set of monomials upvq into an orthonormal basis will be desribed.We use set of monomialsm = [1; u; v; uv; u2; v2; u2v; uv2; u3; v3 : : : upivqi : : :℄T : (10)To generate a sequene of orthonormal polynomials from the generating set of monomialsupvq we use an algorithm equivalent to the Gram{Shmidt proess whih transforms a givenset of n input vetors ai; i = 1; : : : ; n to a set of n orthonormal vetors ei spanning the samevetor spae. The proedure is outlined in an algorithm1. e1  a1=jja1jj2. For i = 2; : : : ; n(a) ai  ai �Pi�1j=1(ai; ej) ej(b) ei  ai=jjaijjIn step 2a of this algorithm, the i{th input vetor is replaed by its orthogonal omponent toa vetor spae spanned by the �rst i�1 orthonormal vetors, thus by the di�erene betweena vetor and its projetion to a sub{spae.An equivalent proedure an be applied to polynomial funtions on the anonial elements(unit square or standard triangle) to transform a given set of monomials mi to a set oforthonormal polynoms Ei1. E0  m0=jjm0jj2. For i = 1; : : : ; n(a) Ei  mi �Pi�1j=0(mi; Ej)Ej(b) Ei  Ei=jjEijjIf a mapping is linear, we an obtain a universal orthonormal basis, suh as for anytriangle with straight edges in the following formp[r1; r2℄E0 = p2 ;p[r1; r2℄E1 = �2 + 6u ;p[r1; r2℄E2 = 2p3 (�1 + u+ 2v) ;p[r1; r2℄E3 = 3p2=7 (1� 4u� 4v + 20uv) ; : : : (11)



where [r1; r2℄ is a simple salar onstant , the Jaobian D0 = (r1 � r2) Æ k = [r1; r2℄ .For a nonlinear mapping of a anonial element we obtain unique set of orthonormalfuntions for eah urvilinear element.This is illustrated in Fig.2 where several funtions Ei are shown (all funtions are up todegree 5 exept onstant funtion E0). It is lear that the high order methods enable toapproximate the solution inside the element in muh more detail.Arti�ial ompressibility methodNavier-Stokes equations of an unsteady ow of a ompressible liquid are a system of mixedhyperboli{paraboli type. For an inompressible liquid the equations form a system ofellipti{paraboli type. The primary diÆulty in solving the inompressible ow in primitivevariables stems from the lak of time derivative in ontinuity equation. Most of the methodsrequire a solution of Poisson equation for oupling between the veloity and the pressure�eld in eah step. This requirement is poorly satis�ed in robust and e�etive numerialmethods where balane of mass, momentum and energy are used. But there is a possibilityhow this disadvantage an be overome.The method is known as the arti�ial ompressibility or pseudo{ompressibility methodand was �rst introdued in [6℄. In this formulation a time derivative of pressure is added tothe ontinuity equation. With the momentum equations we obtain a hyperboli system witharti�ial pressure waves of �nite speed whih an be solved in pseudotime to divergene{free steady{state solution. As a onsequene of this many of eÆient and well developedompressible ow algorithms an be used for this method. Using subiteration in pseudotimean the method extended to solve time dependent problems [19, 2℄.Following the arti�ial ompressibility formulation, a time derivative of pressure p isadded to the ompressibility equation�p�t + � ��vx�x + �vy�y � = 0; (12)where � is known as the pseudo{ompressibility onstant whih is linked with an arti�ialsound veloity a by the relation � = 1=a2 [1℄.The equations for inompressible visous ow are presented here in nondimensional formfor x = x=L, y = y=L, vx = vx=V1, vy = vy=V1, p = p=(�V 21), t = tV1=L, M1 = V1=aand Re1 = V1L=�1. Here t represents the pseudo{time and is not related to physial time.Combining the momentum equations for the inompressible Navier{Stokes equations withequation (12) results in system �U�t + �F x�x + �F y�y = 0; (13)where U is vetor of variables U = [p; vx; vy℄T ; (14)



Figure 2: Orthonormal basis on a anonial triangle. In brakets is degree of orthonormalpolynom.



Vetors of ow omponents in diretions of o-ordinates F x and F y areF x = 24 vx=M21v2x + p� �xxvxvy � �xy 35 ; F y = 24 vy=M21vxvy � � yxv2y + p� � yy 35 ; (15)and omponents of symetri shear stress tensor � are�xx = 23 (2 �vx=�x� �vy=�y) =Re1;� yy = 23 (2 �vy=�y � �vx=�x) =Re1;�xy = (�vx=�y + �vy=�x) =Re1: (16)To solve the equation (13) a disontinuous Galerkin method was used. The disontinuousGalerkin method is espeially a highly ompat formulation that provides a method forobtaining a high auray solution on the unstrutured grids [12, 3℄. Sine solutions of theinompressible equations do not have strong disontinuities (shoks), it is possible solvingwithout need for any limiting and high order methods ould be used in whole ow �eld.More detail desription of this method an be found in [11℄.Numerial resultsThe ode was tested for some laminar ow ases. The ases were hosen beause they havebeen studied previously by others numerially or experimentally.Driven avity owFlow in 2{D square avity provides a good test ase if there no primary ow diretion andthe boundary onditions are very simple. This geometry has been used as a validation aseby several authors [8, 21, 13, 18, 5℄ The above desribed method has been tested for a widerange of Reynolds numbers, Re with a polynomial degree of approximation up to seven. ForReynolds numbers up to 5000 the results pratially oinide with data already published.Therefore we fous on a reently ontroversial ase for Re = 10000.For a long time the sienti� disussion on the avity ow for Reynolds number Re =10000 was divided into two questions - is the ow �eld inside the avity stationary or not.Some works report stable solutions until this value [8, 21, 15, 16℄. But reent works [4, 5℄assert, that the ow �eld is not stable at Re = 10000 and the �rst Hopf bifuration oursaround Re = 8000. The alulations were performed on relatively dense omputational grids512� 512 to 2048� 2048 [5℄.In the following setion we present the results of the high order method but on muh moresparse grids. In Fig.3 there is shown a plot of time series of veloity vx inside a monitoringpoint for the grid 10� 10 elements for a di�erent degree of funtional approximation. It isevident that for using the high degree orthonormal polynoms the solution is less dampedand beomes periodial.
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Figure 4: Horizontal veloity history and phase portrait at monitoring point (0.14,0.78).Retangular avity at Re = 10000. Grid 20� 20, funtional approximation degree 4.If the grid is denser, say 20� 20 elements, nearly steady periodial solution is obtainedwith orthogonal polynoms of four degree. The polynoms of higher order gives a very similarsolution. It is lear that the high order funtional approximation allows to desribe aninstability of ow �eld even for a very oarse grid of elements.Flow over a irular ylinderAs an example of an external ow problem, the ow over 2{D irular ylinder was alulated.The ode was run for invisid and laminar{ow test ases.The auray of the geometrial disretization and the eÆieny of the solution aretested for the Euler equations of ow past a irular ylinder. A series of grids onsisting ofa di�erent number of the triangular and isoparametri elements { linear or quadrati { have
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lowerFigure 5: Euler equations of 2D ow past a irular ylinder. Linear approximation of aboundary (120 boundary elements, left) and quadrati approximation of a boundary (36boundary elements, right).been generated to study onvergene of the disontinuous Galerkin method of various order.The Riemann ux on ell boundaries is approximated by a simple and robust, but moredissipative, Lax{Friedrihs type ux [14, 22℄ of the formFR(Qi; Qj) Æ n = 12[F (Qi) + F (Qj)℄ Æn� �2 (Qj �Qi); (17)where � is greater than a maximum of the absolutes of the eigenvalues of dF =dQ. We anonsider the seond term of FR approximation as a numerial visosity, whih is not presentin Euler equations, but is required for the stability of numerial solution. Simultaneouslythere is neessity to redue { as it is possible { an inuene of this term in the solution.As an be seen in Fig. 5, linear geometri approximation of a boundary leads to wrongarti�ial vorties downstream the ylinder even if a number of the boundary elements isrelatively high. On the other hand the quadrati approximation provides good results evenfor a relatively low number of the boundary elements.The above mentioned behaviour is intensi�ed if the high order funtional approximationis used. In suh ase the linear approximation of urved boundary an totally devaluethe results. To suessfully apply the high order funtional approximation a high orderapproximation of the urved walls is required.As an example of the solution of the Navier-Stokes equations a pressure �eld for Re = 5is shown in Fig. 6. The alulated values of pressure oeÆients p at the front and rearstagnation points are pf = 1:88 and pr = �1:07. Even if the oarser grid of 357 elementsis used the results are well omparable with data in [7℄ (pf = 1:872 and pr = �1:044) and[19℄ (pf = 1:847 and pr = �1:067).Another results that were obtained by this approah an be found in [9, 10℄ for Reynoldsnumbers up to 200000. The alulated ow �eld reasonably well orrespond with availableexperimental data (e.g. [20℄).
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