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Summary: A brief survey dealing with vorticity-decomposition methods is 
presented. A particular emphasis is put on their physical aspects and practical 
applicability. 
 

1. Introduction 
The idea of vorticity (i.e. ) decomposition has its own history, though much shorter than 
the decomposition of motion. It is almost fifty years old according to Astarita (1979), 
Wedgewood (1999) and the references therein. The present paper provides a very brief survey 
dealing with different vorticity-decomposition techniques including a novel approach 
proposed by Kolář (2004, 2007a). A particular emphasis is put on the underlying physical 
reasoning, similarities and differences between different concepts including practical 
applicability of these schemes. 
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2. Methods 
The Giesekus-Harnoy-Drouot decomposition (this terminology is adopted following 
Wedgewood 1999), first treated by Giesekus (1962), leads to the objective vorticity tensor 
obtained with respect to the principal axes of the strain-rate tensor. A quantity is called 
objective if it fulfils frame indifference (i.e. both translational and rotational independence by 
remaining invariant under translational and rotational coordinate changes), see e.g. Leigh 
(1968). Astarita (1979) proposed this measure for a flow classification scheme while others 
for the description of complex inelastic fluids. 
 Wedgewood (1999) derived a new vorticity decomposition into two parts, the so-called 
deformational vorticity and the rigid vorticity. His analysis employs the cross product of a 
particle’s velocity and acceleration, tDDu/u× , and leads to the evolution equation for the 
objective deformational vorticity. The solution of the ‘Wedgewood equation,’ which depends 
on both space and time derivatives of the velocity-gradient tensor, is proposed for a flow 
classification scheme and to develop objective constitutive equations for the description of 
complex rheological fluids (viscoelastic fluids). It should be emphasized that the application 
of the Wedgewood criterial quantity tDDu/u×  results in a necessity of knowing the 
temporal changes (time derivatives) of experimentally and/or numerically determined 
velocity-gradient fields. On the other hand, the Wedgewood procedure provides an objective 
portion of the vorticity tensor similarly as the above mentioned well-known Giesekus-
Harnoy-Drouot decomposition. 
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 Recall that the velocity-gradient tensor u∇  can be decomposed in the conventional 
manner as , its symmetric and antisymmetric parts representing the strain-rate 
tensor S and vorticity tensor Ω, respectively. For the local flow field near a point, 
Wedgewood (1999) adopted the assumption that 

ΩSu +=∇

tDDu/u×  must vanish ― on average ― 
along three orthogonal axes (the same results can be obtained by volume averaging) to derive 
the following equation for the deformational vorticity tensor  while decomposing the 
vorticity tensor  where  is the rigid vorticity tensor (notation  and  is 
retained following Wedgewood) 
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where the Jaumann derivative 
tD
D  is employed (T denotes an arbitrary second-order tensor) 
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The Jaumann derivative reflects the temporal rate of change relative to a corotating frame (the 
rotation of this local reference frame is given by the vorticity tensor Ω). 
 The ‘Wedgewood equation’ (1) requires S and  to be differentiable in both space and 
time. Wedgewood (1999) inferred from (1) the objectivity of . Finally, he formulated a 
flow classification and general objective constitutive equations based on invariants of S and 

, and on the so-called rigid-rotational derivative quite similar to the Jaumann derivative 
(formally obtainable by substituting vorticity tensor Ω by the rigid vorticity tensor ). 
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 Kolář (2004, 2007a) directly decomposed the relative motion near a point through the 
analysis of a “frozen” flow field at a given instant in time. However, unlike the Wedgewood 
procedure, the velocity-gradient tensor u∇  is decomposed as a whole rather than the vorticity 
tensor itself. The outcome of this effort, the triple decomposition of motion (TDM) ― based 
on the extraction of a so-called “effective” pure shearing motion ― has been motivated by the 
fact that vorticity cannot distinguish between pure shearing motions and the actual swirling 
motion of a vortex. In the corresponding triple decomposition of , conventionally 
decomposed as , the strain-rate tensor S and vorticity tensor Ω are cut down in 
magnitudes to “share” their portions through the third term 

u∇
ΩSu +=∇

( )SHu∇  associated with a pure 
shearing motion. In terms of the residual portions of S and Ω, it reads 
 

( )SHRESRES uΩSu ∇++=∇ . (3) 

 
The third term of the triple decomposition denoted as ( )SHu∇  is described by the “purely 
asymmetric tensor form”  its components  fulfilling in a suitable reference frame ( )SHu∇ jiu ,
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This term is responsible for a specific portion of vorticity labelled “shear vorticity” and for a 
specific portion of strain rate labelled “shear strain rate” while the remaining portions of S and 
Ω are labelled “residual strain rate” and “residual vorticity”. 
 The triple decomposition of motion is closely associated with the so-called basic reference 
frame (BRF) where it is performed. In this frame, (i) an effective pure shearing motion is 
shown “in a clearly visible manner” described by the form (4) under the definition condition 
that (ii) the effect of extraction of a “shear tensor” is maximized within the following ― quite 
natural and straightforward ― decomposition scheme applicable to an arbitrary reference 
frame 
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where the residual tensor is given by 
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 In (5a, b) the following simplified notation is employed: u, v, w are velocity components, 
subscripts x, y, z stand for partial derivatives. The remaining two non-specified pairs of off-
diagonal elements of the residual tensor in (5b) are constructed strictly analogously as the 
specified one, each pair being either symmetric or antisymmetric. 
 The effect of extraction of the shear tensor is maximized where the absolute tensor value of 
the residual tensor is minimized by changing the reference frame under an orthogonal 
transformation. This extremal condition guarantees that a pure shearing motion ― if 
considered separately ― is recognized as a third elementary part of the TDM. 
 The qualitative model of three elementary motions of the TDM is depicted in Fig. 1. The 
deformable fluid element in Fig. 1 consists of discrete undeformable material points in terms 
of which the local rate of deformation is described through their relative motion. The material 
point represents ― in the present context ― “much less than a fluid element” and generally 
allows translation and rotation only. A pure shearing motion in Fig. 1 is not a mere 
combination of an irrotational straining motion with a rigid-body rotation as in the case of the 
double decomposition. This fact can be easily checked through the rotational change of 
material points which remains zero for a pure shearing motion within the proposed qualitative 
model of the TDM. The rotational change of material points is just the quantity reflecting the 
actual swirling motion of a vortex: note that both an irrotational straining and a pure shearing 
motion do not contribute to this rotational change (at least according to the present approach).  
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Fig.1 Qualitative model of three elementary motions of the TDM. 
 
For further details, quantitative TDM evaluation algorithm, discussion, and particularly for 
the qualitative description of flow kinematics near a point adopted in the frame of the TDM 
see Kolář (2007a). 
 The proposed novel decomposition technique results in two additive vorticity parts (and, 
analogously, in two additive strain-rate parts) of distinct nature, namely the shear component 
and the residual one. The residual vorticity obtained after the extraction of an “effective” pure 
shearing motion represents a direct kinematic measure of the actual swirling motion of a 
vortex as it can be related to (twice) the angular velocity of material points, see Fig. 1. More 
conventionally, the residual vorticity in 2D can be directly interpreted in terms of (twice) the 



least-absolute-value angular velocity of all line segments, within the flow plane, going 
through the given point and perpendicular to the vorticity direction. 
 The above mentioned interpretations of the residual vorticity are obviously good 
arguments for using this measure in vortex identification. Consequently, a new vortex-
identification method is proposed and applied to typical vortical shear flows, turbulent jets 
and wakes, see Kolář /et al. (2004, 2007a, 2007b, based on data 1997, 2000, 2003, 2006). 
 
3. Concluding remark 
Different methods of vorticity decomposition are based on different physical grounds, and 
naturally provide different sets of new kinematic variables. Practical applications of these 
kinematic variables may range from flow classification schemes, through constitutive 
equations for complex rheological fluids, to vortex identification and the description of 
turbulent and/or complex vortical flows. 
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