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l. INTRODUCTION 

In [1, 2] the effect of two absorbers for quenching self-excited vibrations induced by flow is treated. In 

the first case the absorber can move perpendicularly, while in the second one along the axis of the pendulum. 

Thus the arrangement of the absorber mass differs substantially. 

In this contribution a pendulum system as in Figure 1 is treated. Here, not only the absorber damping 

effect is considered but also his application as an active tool for vibration suppression through parametric 

excitation. The parametric excitation is due to periodic stiffness variation of the elastic mounting of absorber 

mass. The positive effect of parametric excitation for suppressing self-excited vibration was discovered when 

analyzing interaction of self-excitation and parametric excitation [3], while the conditions for a full suppression 

self-excited vibration were formulated later on, see [4, 5]. 

The basic pendulum system in Figure 1 is characterized by the concentrated mass M  at distance l  

from the pendulum suspension point O  and by the absorber of mass m  located at a distance 0l  from M . The 

distance of the absorber mass m  from the pendulum axis is ( ) ( )0 tanl l ψ ϕ+ − , where ϕ , ψ  are the deflection 

angles with respect to the vertical direction. For small values of ϕ  and ψ  it can be assumed that 

( ) ( ) ( )( )0 0tan .l l l lψ ϕ ψ ϕ+ − ≈ + −  This relation would be perfectly true in case of a circular trajectory of the 

absorber’s mass. 

 

2. DIFFERENTIAL EQUATIONS OF MOTION 

The self-excitation due to the flow can be modeled by van der Pol terms. We assume that for the case of 

a passive tool the stiffness of the absorber spring k remains constant while for the case of an active tool using 

parametric excitation it varies in time according to the relation ( ) ( )0 1 cosk t k tε ω= + . This stiffness variation 

can be established, e.g., by a controlled magnetic force acting on the absorber’s mass. 

Considering the kinetic ( K ) and potential (U ) energies, one has: 

( )
22 2 2

0

1 1
,

2 2
T Ml m l lϕ ψ= + +ɺ ɺ         (1) 

( ) ( )( ) ( ) ( )
2 2

0 0

1 1 1
1 cos 1 cos .

2 2 2
U Mgl mg l l k l lϕ ψ ψ ϕ= − + + − + + −     (2) 

Thus, by assuming the van der Pol model for self-excitation and a linear viscous damping for the absorber, the 

above system is governed by the following differential equations of motion: 

 

 

National Conference with International Participation 
ENGINEERING MECHANICS 2007 
Svratka, Czech Republic, May 14 – 17, 2007  



 2 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

22 2

0 0

2 2

0 0 0 0

sin 0 ,

sin 0 .

Ml b d Mgl b k l l

m l l mg l l b k l l

ϕ ϕ ϕ ϕ ψ ϕ ψ ϕ

ψ ψ ψ ϕ ψ ϕ

− − + − − − + − =

+ + + + − + + − =

ɺɺ ɺ ɺ ɺ

ɺɺ ɺ ɺ

    (3) 

Thus, after proper rearrangement of equations (3) we obtain the form:  

( )
( )

( )

( )
( ) ( )

2

02 0

2 2 2 2

0

2
0 0

sin 0 ,

sin 0 .

k l lbb d g

lMl Ml Ml Ml

bg k

l l mm l l

ϕ ϕ ϕ ϕ ψ ϕ ψ ϕ

ψ ψ ψ ϕ ψ ϕ

+ 
− − + − − − − = 
 

+ + − + − =
+ +

ɺɺ ɺ ɺ ɺ

ɺɺ ɺ ɺ

   (4) 

By using the time transformation 

0 0, ,
g

t
l

τ ω ω= =          (5) 

and assuming that small oscillations will occur, equations (4) get the form: 

( ) ( ) ( )

( ) ( )

2
2

2 2

2

0 ,

0 ,

q

q

κµ µ
ϕ β δϕ ϕ ϕ ψ ϕ ψ ϕ

α α

ψ αψ κ ψ ϕ ψ ϕ

′′ ′ ′ ′− − + − − − − =

′′ ′ ′+ + − + − =

     (6) 

where: 

( )

( )
( )

2

2 2 2 2

00 0 0 0 0

2 20
0 02

0 0

, , , , ,

, 1 cos , / .

m k kl g l b d
q

M mg l lm l l Ml Ml

b
q q

m l l

µ α β δ
ω ω ω ω

κ ε ητ η ω ω
ω

= = = = = = =
++

= = + =
+

 

Assuming that the damping coefficients and the amplitude ε  are small, the abbreviated system reads: 

( )

2 2

0 0

2 2

2 2

0 0

1 0 ,

0 .

q q

q q

µ µ
ϕ ϕ ψ

α α

ψ α ψ ϕ

 
′′ + + − = 

 

′′ + + − =

        (7) 

The natural frequencies can be determined from the equation: 

( )
2 2

2 420 0
4 2 2 20 02 2

0 02 2 2
2 2 2

0 0

1
1 1 1 0 .

q q
q q

q q

q q

µ µ
µ µµ

α αα α
α α α

α

 + − Ω −   
= Ω − + + + Ω + + + − =   

    − + − Ω

 (8) 

Hence, using transformation: 

1 2

1 1 2 2

,

,

y y

a y a y

ϕ

ψ

= +

= +
          (9) 

where: 

2

0

2 2

0

, ( 1, 2) .j

j

q
a j

qα
= =

+ − Ω
 

equations (6) can be transformed into the quasi-normal form: 

( ) ( )
2

2

1

cos 0 , 1, 2 .s s s sk k sk

k

y y y Q sητ
=

′′ ′+ Ω + Θ + = =∑      (10) 

For system (10) the coefficients are: 
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( )

( )

( )

( )

( )

11 2 1 2 2

1 2

12 2 2 2 2
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0
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1
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1
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1 1 ,

a a a
a a
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Q a a
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Q

a
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β κ

α
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β κ

α
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β κ

α

µ
β κ

α

ε µ

α
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Θ = − − +  −   

  
Θ = − + − +  −   
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−  

= − ( )
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a

q
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q
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µ

α

ε µ

α

ε µ

α

 
− + 

−  

 
= − + 

−  

 
= − + 

−  

      (11) 

When 0 , ( 1,2)jj jΘ < =  the corresponding vibration mode can be initiated. However, if all 0jjΘ >  then the 

equilibrium position is stable. 

The parametric excitation can stabilize the equilibrium position at the combination frequency 

0 2 1η η≈ = Ω − Ω  (see [3, 4]) if the following conditions are met: 

11 22 0 ,Θ + Θ >           (12) 

12 21
11 22

1 2

0 .
4

Q Q
+ Θ Θ >

Ω Ω
         (13) 

When inserting 11Θ , 22Θ  from (11), condition (12) gets the form: 

2
1 0 .

µ
β κ

α

 
− + + > 

 
         (14) 

Moreover, inserting 11Θ , 22Θ , 1Ω , 2Ω , 12Q , 21Q , in condition (13) we obtain: 

( ) ( )

( )( )

1 2 1 1 1 2 2 22 2
2

4

0 1 2 1 22 2

4 1 1 1 1

.

1 1 1 1

a a a a a a

q a a a a

µ µ
β κ β κ

α α
ε

µ µ

α α

      
Ω Ω − + − + − − +      

      
>

  
− − + +  

  

   (15) 

Equation (15) allows one to determine the boundary value of the parametric excitation for which the equilibrium 

position is stable at frequency 0 2 1η η≈ = Ω − Ω . When 2 0ε < , i.e. 11 22 0Θ Θ > , one has that the equilibrium 

position is stable even if parametric excitation is not applied. Thus, the boundary value Bε  can be obtained from 

(15) by satisfying the condition 2 0Bε = . 

The calculation of the boundary value 
Bε  for different system parameters enables one to optimize the 

design parameters of the absorber, first of all the location α  and the tuning 0q , the remaining parameters being 

assigned. Here we can stress some difficulties for practical applications: the first one is related to the limitations 

of the absorber mass, while the second one requires that the distance of the absorber from the center of gravity of 

the basic pendulum system cannot be excessive. 
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3. EXAMPLES 

The stability of system (6) has been investigated by searching for the normal mode frequencies (8) and by 

solving equation (15) to obtain the boundary values 
Bε  for the parametric excitation. Thus in Figures 2-7 we 

show the boundary values of parametric excitation necessary for the suppression of self-excited vibrations 

together with the normal mode frequencies 1Ω  and 2Ω , and the combination frequency 0 2 1η = Ω − Ω . The 

results in Figures 2-4 highlight the effect of α  and refer to 0.05µ = , 0.05β κ= =  and different values of 2

0q , 

which are ranging from 0.20 to 0.80. It can be seen that reasonable values for parametric excitation boundary can 

be obtained for 1α < , i.e. for 0l l l< + . This implies 0 0l > , i.e., the self-excited vibration can be damped only 

when the weight is located below the centre of mass of the pendulum. Moreover, in Figure 2 the boundary value 

Bε  clearly indicates that there exists a broad interval of α  (0.05< α <0.29) where both 11Θ  and 22Θ  are 

positive and parametric excitation is not necessary to suppress the vibration. Taking into account that a system 

with the absorber far from the center of gravity can hardly be build, it is important to consider the boundary 

( )Bε α  in the proximity of α  = 0.78 for which the absorber can easily be designed. 

 

The effect of mass ratio µ  is shown in Figure 5, while Figure 6 shows the effect of the tuning 2

0q . It 

can be seen that parametric excitation is able to suppress self-excited vibrations for 2

0 0.23q ≈ , while the optimal 

mass values are around 0.01µ = . 

 

Figure # µ  2

0q  α  κ  β  δ  ε  η  

7 0.01 0.80 0.30 0.10 0.10 2.00 0.30 variable 

8 0.05 0.80 0.30 0.10 0.10 0.40 0.30 variable 

9 0.05 0.40 0.60 0.10 0.10 0.40 0.30 variable 

10 0.05 0.80 0.30 0.10 0.10 0.40 0.30 0.55 

11 0.05 0.228 0.75 0.05 0.05 0.40 0.50 0.0713 

Table 1 – Values of system parameters for numerical simulation. 

 

The parameter values of the examples considered are shown in Table 1. Figures 7, 8 and 9 show the 

extreme deflections of quasi-normal coordinates as a function of η . As expected, a significant reduction of 

vibration amplitude for both [ ]ϕ  and [ ]ψ  occurs in both figures for 0 2 1η η = Ω − Ω≃ , where the parametric 

excitation is able to suppress self-excited vibrations at the combination frequency. The amplitude remains almost 

constant in the whole frequency range, but an amplitude increase is observed at the subharmonic resonance 

12η Ω≃  and the combination resonance 1 2η Ω + Ω≃ . 

In Figure 10 we show an example of time domain simulation where the efficiency of suppressing self-excited 

vibrations by means of parametric excitation is clearly demonstrated. The same is not true for the example of 

Figure 11, even if the system parameters and the excitation have been properly selected. This opens the problem 

of further analysis which is necessary to better understand the limits of the suppression process. 
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CONCLUSIONS 

The presented analysis proves that an absorber subsystem added to the basic pendulum system can 

suppress self-excited vibration due to negative linear damping component (e.g. the one generated by the action 

of the flow) especially when using parametric excitation due to stiffness variation of the elastic mounting of the 

absorber mass. Here the phenomenon of parametric anti-resonance is highlighted. The results of the theoretical 

analysis, supplemented by numerical simulations, give the basis for finding the optimal tuning of the absorber 

subsystem. The suppressing efficiency is influenced both by the tuning of the absorber as well as by its location 

in the system. 

 

REFERENCES 

[1] Nabergoj R., Springer H. and Tondl A.: Two dynamic absorbers for quenching self-excited vibration of a 

pendulum, Proc. International Conference Engineering Mechanics 2000, Svratka, , 2000, Editors: J. Naprstek 

and J. Minster, Vol. II, pp. 9-16. 

[2] Tondl A., Kotek V. and Kratochvil C.: Vibration quenching of pendulum type systems by means of 

absorbers, CERM akad. nakl. s.r.o., Brno, 2001. 

[3]  Tondl A.: On the Interaction between self-excited and parametric vibrations. Monographs and Memoranda, 

No. 25, National Research Institute for Machine Design, Prague, 1978. 

[4] Tondl A.: To the problem of quenching self-excited vibrations. Acta Technica CSAV  43, pp. 109-116, 1998. 

[5] Ecker H.: Suppression of self-excited vibrations in mechanical systems by parametric stiffness excitation. 

Fortschrifttsberichte Simulation, Band 11, ARGESIM/ASIM-Verlag, Wien, 2003. 

 

 

 

 

 

M

k

m

M

m

l

l0

ϕ

O

ψ  

Figure 1- Schematic representation of the model. 
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Figure 2 – Parametric excitation limit 
Bε  as a function of α  for µ = 0.05, 2

0q  = 0.20, β κ=  = 0.05, together 

with the normal mode frequencies 1Ω , 2Ω , and the combination frequency 0 2 1η = Ω − Ω . 
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Figure 3 – Parametric excitation limit Bε  as a function of α  for µ = 0.05, 2

0q  = 0.40, β κ=  = 0.05, together 

with the normal mode frequencies 1Ω , 2Ω , and the combination frequency 0 2 1η = Ω − Ω . 
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Figure 4 – Parametric excitation limit 
Bε  as a function of α  for µ = 0.05, 2

0q  = 0.80, β κ=  = 0.05, together 

with the normal mode frequencies 1Ω , 2Ω , and the combination frequency 0 2 1η = Ω − Ω . 
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Figure 5 – Parametric excitation limit Bε  as a function of µ  for α = 0.30, 2

0q  = 0.80, β κ=  = 0.05, together 

with the normal mode frequencies 1Ω , 2Ω , and the combination frequency 0 2 1η = Ω − Ω . 
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Figure 6 – Parametric excitation limit Bε  as a function of 2

0q  for µ = 0.05, α  = 0.75, β κ=  = 0.05, together 

with the normal mode frequencies 1Ω , 2Ω , and the combination frequency 0 2 1η = Ω − Ω . 
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Figure 7 – Extreme values [ ]ϕ  and [ ]ψ of system vibration amplitudes ϕ  and ψ  versus applied parametric 

excitation frequency η  for µ =0.01, 2

0q  = 0.80, α = 0.30, κ = 0.10, β = 0.10, δ = 2.00, and ε = 0.30. 
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Figure 8 – Extreme values [ ]ϕ  and [ ]ψ of system vibration amplitudes ϕ  and ψ  versus applied parametric 

excitation frequency η  for µ =0.05, 2

0q  = 0.80, α = 0.30, κ = 0.10, β = 0.10, δ = 0.40, and ε = 0.30. 
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Figure 9 – Extreme values [ ]ϕ  and [ ]ψ of system vibration amplitudes ϕ  and ψ  versus applied parametric 

excitation frequency η  for µ =0.01, 2

0q  = 0.40, α = 0.60, κ = 0.10, β = 0.10, δ = 2.00, and ε = 0.30. 
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Figure 10 – Time domain simulation for µ =0.05, 2

0q  = 0.80, α = 0.30, κ = 0.10, β = 0.10, δ = 0.40, ε = 0.30 

and η  = 0.55, where the efficiency of suppressing self-excited vibration is shown. 
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Figure 11 – Time domain simulation for µ =0.05, 2

0q  = 0.80, α = 0.75, κ = 0.05, β = 0.05, δ = 0.40, ε = 0.50 

and η  = 0.0713, where the failure of suppressing self-excited vibration is shown. 


