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Summary: This contribution deals with computation of stiffness and damp-
ing coefficients of aerostatic bearings. Model of bearings is based on Reynolds
equation for compressible medium supplemented by description of mass flow
through feeding system. Time-series of displacements and internal force are
obtained by numerical solution. Linear stiffness and damping coefficients are
obtained by means of least squares regression.

1. Introduction

Externally pressurized gas bearings have some valuable advantages in comparison of oil
bearings. These attributes are for instance higher precision, low noise, high durability,
lower heat generation and less contamination. The main disadvantage of gas bearings
is their possible low stability. The instability of aerostatic bearings has to be avoided
during operation, because it mostly means a serious damage to equipment. Some problems
of aerostatic bearing stability are shown in works of Czo lczyński & Kapitaniak (1997),
Czo lczyński (1993).

The bearing is commonly represented by sets of stiffness and damping coefficients,
which is suitable for computation of stable regions and amplitudes of forced vibrations.
Classical approach to obtain these properties is to solve perturbed Reynolds equation.
This method has been often used for self-acting gas bearings and even more frequently
for oil bearings, but it can be also used in case of externally pressurized gas bearing by
introducing air mass flow variations (Han et al., 1994). The other way is to solve Reynolds
equation for compressible medium in time domain together with equations of journal
motion (Skarolek & Kozánek, 2006). The bearing thereby is treated as more real than
in method mentioned above. The results are not limited to case of small displacements
and even non-linear coefficients of stiffness and damping is obtainable in sense of internal
bearing force to be considered as polynomial function of displacements and velocities
(Czo lczyński, 1999).
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The aim of the paper is to determine these dynamic properties of the specific aero-
static bearings. The results will be compared with results obtained from experimental
investigation on rotor stand (Šimek et al., 2007), which is already built at FME, CTU,
Prague for validation of the methods.

2. Investigated aerostatic bearings

Two different bearing shapes have been considered. The former has one row of feeding
orifices situated in the middle of bearing (type A), the latter has two rows of orifices
placed in quarters of bearing length (type B). There are eight orifices evenly located on
bearing periphery in every row of either types of bearing. Schematics of the bearings are
shown on fig.1. Both of the bearing types have been designed by Techlab, Ltd., Prague.

Figure 1: Radial aerostatic bearings

3. Mathematical model of bearing

Equations of motion of shaft journal for two translational lateral degrees of freedom are:

mÿ = Fy −mg + Qy, mz̈ = Fz + Qz. (1)

Fy, Fz mean components of internal force of bearing and Qy, Qz mean excitation forces
acting upon journal. Internal force is determined by pressure distribution in bearing, which
is given by Reynolds equation supplemented by terms of air mass flow through feeding
system. Dimensionless form of Reynolds equation for compressible medium
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by means of atmospheric pressure pa, radius of bearing R, angular velocity of journal ω,
radial clearance c and air viscosity µ. Right-hand side of (2) involves mass flow of supplied



air ṁ, which is nonzero only at areas of feeding orifices. St. Venant - Wantzel’s formula
is used to determine the air mass flow
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√
2κ

κ− 1

1

rT0

[
1 − β

κ−1
κ

]
β

1
κ , β = max

{
p

p0

, β∗
}

, β∗ =
(

2

κ + 1

) κ
κ−1

. (4)

In the equation (4) the symbol Av means cross section area of feedhole and the symbol
Cv means discharge coefficient according to Czo lczyński (1999):

Av = πr2
0, Cv = 0.85 − 0.15β − 0.1β2. (5)

The internal force of bearing is evaluated from pressure distribution within the air layer
as follows
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There is more complex mathematical model of aerostatic bearing presented in recent
works (Skarolek & Kozánek, 2006; Skarolek, 2007). It respects tilting degrees of freedom
of journal and also internal bearing torques. Simplified, hereby established model allows
us to obtain only stiffness and damping coefficients related to translational displacements
of journal centre.

4. Discretization and numerical methods

The method of finite differences is used for discretization of the Reynolds equation (2).
The circumferential coordinate ξ ∈< 0, 2π > has been divided into m segments, the axial
one ζ ∈< 0, L

R
> into n segments. Created equidistant mesh with (m + 1) · (n + 1) nodes

divides the air layer into m ·n subregions. Two rows and one column of nodes are attached
to the mesh in order to implement the boundary and periodic conditions. See figure 2. The

Figure 2: Mesh of the air film area



spatial derivatives have been replaced by finite differences in the equation (2). A system
of non-linear differential equations with pressure as dependent variable has arisen
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It describes time behaviour of the pressure distribution in relation to the thickness function
and its rate of change. Thickness function and its time derivative are obtained from actual
position and velocity of journal centre.

Dynamic systems (1) and (7) have been solved separately for each time step of numer-
ical method. Actual position and velocity of journal generate the thickness function and
its time derivative. Computation of one time step of system (7) follows. Solved pressure
distribution gives us the reactions acting on journal from (6). Single time step of journal
equations of motion (1) is solved using just calculated reactions, and entire process is
repeated for the next time step. There are two main reasons, why the systems are solved
separately during single time step. First is to avoid time-consuming calculations of reac-
tions and thickness functions, which could be computed many times in one time step, if
some implicit method was used. The second reason is an assurance of method stability,
which depends on eigenvalues of Jacobi matrix of system, time step and stable region of
used method. Absolute stability of explicit methods are strongly limited, and evaluation of
Jacobi matrix eigenvalues would not be effective. Therefore, authors made an compromise
between method stability and algorithm efficiency. A-stable Adams–Moulton method of
order two is used for solving system (7) and the fourth order Runge–Kutta method is used
for solving system (1), similarly to previous works (Skarolek & Kozánek, 2006; Skarolek,
2007).

5. Obtaining dynamic properties

The numerical model governed above is used for enumeration of stiffness and damping
coefficients. Presented approach leads to computation of equilibrium position of journal
within bearing and then to solving time-series of internal forces and displacements caused
by kinematical excitation of journal centre. Finally, stiffness and damping coefficients are
estimated by least squares regression.

Linear model of aerostatic bearings predicts the reaction force components(
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where F e
y , F e

z are an internal force components, acting in journal position ye, ze of equi-
librium. Journal centre is treated to small harmonic displacements in both directions,

ỹ = y − ye = A · sin(ωνt), ˙̃y = ẏ = Aων · cos(ωνt), (9)

and
z̃ = z − ze = A · sin(ωνt), ˙̃z = ż = Aων · cos(ωνt) (10)

separately, after the equilibrium ye, ze and F e
y , F e

z have been obtained by simulation of
systems (1), (7). Before using least squares regression on computed time-series of inter-
nal forces and displacements, we should divide the equation (8) into four independent
equations,

Fyy = kyy · ỹ + byy · ˙̃y, Fzy = kzy · ỹ + bzy · ˙̃y, (11)

Fyz = kyz · z̃ + byz · ˙̃z, Fzz = kzz · z̃ + bzz · ˙̃z. (12)

The functions ỹ, ˙̃y and z̃, ˙̃z are orthogonal in sense of scalar product, defined on Lebesgue
L2 function space. This is the reason, why authors prefer kinematical actuating against
force excitation. Even if the external force was acting in single direction, steady-state
motion of journal consists of both displacements, horizontal and vertical, due to dynamic
effect of air layer when journal is revolving. Specially the excitation of the journal by
force of unbalanced rotating mass, which produces almost circular motion for lesser ec-
centricities of journal in bearing, seems to be useless for least square regression, because
the displacements are not only dependent, but functions ỹ and ˙̃z become closely collinear
(and z̃ become closely collinear with ˙̃y).

6. Results

Stiffness and damping coefficients versus argument ν has been solved for both bearing
types, A and B, for speed of journal ω = 1047 rad s−1. Radial clearance of bearings was
c = 32.5 µm for the type A, and c = 22.5 µm for the type B. Other parameters were
shared for both these types. Bearing length L = 45 mm, journal radius R = 15 mm,
diameter of feedholes d0 = 0.2 mm, journal mass m = 4 kg and supplied air pressure
p0 = 3 pa =̇ 0.3 MPa. Figures 3, 4 show computed dynamic coefficients for bearing type A,
figures 5, 6 for bearing type B. Relative eccentricity forced by journal mass was ε = 0.44
for bearing A and ε = 0.25 for bearing B.

Considering ν = 1 (vibration due to rotating unbalanced mass), dependency of dy-
namic properties on journal angular speed has been computed, with other values men-
tioned above. See fig. 7, 8 for bearing A, fig. 9, 10 for bearing B. Fig. 11, 12 show equi-
librium in relation to ω.
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have been computed using obtained stiffness and damping coefficients, their real and
imaginary parts are shown on fig. 13, 14.



Figure 3: Stiffness vs. ν, Bearing A

Figure 4: Damping coefficient vs. ν, Bearing A



Figure 5: Stiffness vs. ν, Bearing B

Figure 6: Damping coefficient vs. ν, Bearing B



Figure 7: Stiffness vs. journal angular velocity ω, Bearing A

Figure 8: Damping coefficient vs. journal angular velocity ω, Bearing A



Figure 9: Stiffness vs. journal angular velocity ω, Bearing B

Figure 10: Damping coefficient vs. journal angular velocity ω, Bearing B



Figure 11: Equilibrium of journal centre, Bearing A

Figure 12: Equilibrium of journal centre, Bearing B



Figure 13: Eigenvalues vs. journal angular velocity ω, Bearing A

Figure 14: Eigenvalues vs. journal angular velocity ω, Bearing B



7. Conclusions

Linear stiffness and damping coefficients can be solved by presented method. Solutions
of two examples of aerostatic bearings show relations between stiffness and damping
coefficients and angular frequency of rotating journal. Obtained coefficients can be used for
solving stability and amplitudes of steady-state vibrations by methods of linear algebra.
Results of the method is to be verified by experiments.
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