
 
 
 

 
 
   

 
 
 
 

ON APPLICATIONS OF GENERALIZED FUNCTIONS TO 
CALCULATION OF BEAM-COLUMN DESIGN ELEMENTS 

  
 

J. Sobotka* 
 
 

Summary: The classical mathematical model of beam-columns contains 
derivatives of functions for the bending moment, the shear force, the axial force, 
the slope, and the deflection, that are not defined at points in which internal 
supports or concentrated lateral and axial loading or internal hinges or internal 
sliding connections are situated. In order that the mathematical model of the 
beam-columns may be valid also at these points of discontinuity we use 
generalized functions and derive the generalized mathematical model in the form 
of a system of ordinary differential equations. We use the Laplace transform for 
solving this generalized model with constant axial tension force. The solution 
found is the generalization of the classical initial parameters method because it 
covers also discontinuous beam-columns, i.e. with internal hinges or internal 
sliding connections. 

 
 
1. Introduction 
The classical mathematical model of beam-column bending in the form of the system of 
ordinary differential equations (SODE) contains classical derivatives that are not defined at 
points of discontinuity of unknown functions such as the shear force, the bending moment, the 
slope, and the deflection. Such discontinuities occur in calculation experience at points in 
which concentrated forces, concentrated moments, internal supports, internal hinges or 
internal shear-free connections are situated.  

    In order that the mathematical model for beam-column bending may hold true also at the 
points of discontinuity mentioned we use distributional derivatives for unknown functions and 
derive the generalized SODE. The generalized mathematical model for beam-column bending 
contains the Dirac distribution at various places so as to represent corresponding 
discontinuity. The discontinuity in the shear force may also occur at an internal hinge and the 
discontinuity in the bending moment may also occur at an internal sliding connection by 
virtue of the axial force. The discontinuity in the equivalent distributed force, in the flexural 
stiffness or in the axial force may be represented through the use of the Heaviside's unit step 
function.  
    The general solution to the generalized model of the beam-column bending may be found 
by means of the Laplace transform for prismatic beam-column with constant axial force. 
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2. The Classical Mathematical Model of Plane Bending of Straight Slender 
    Beam-Columns 
This classical model (Němec, Dvořák, Höschl, 1989) may be formulated as the system of 
ordinary differential equations (SODE) of the first order Eqs. (1) to (4), and was derived 
under the following assumptions: (i) an infinitesimal element of a beam-column was cut out 
in the deformed shape, (ii) the Bernoulli-Navier hypothesis holds true, i.e. the cross sections 
of the beam-column remain always plane and perpendicular to the beam-column axis.  
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where  

T(x) shear force [N] (positive one causes an angle of turn clockwise of the tangent line 
to the beam-column axis) 

M(x) bending moment [Nm] (positive one causing positive curvature) 
( )φ x  slope [rad] (positive direction counterclockwise) 
( )v x  deflection [m] (positive direction upward) 
( )qn x  equivalent distributed force [N/m] (positive direction downward) 
( )qm x  equivalent distributed moment [Nm/m] (positive direction clockwise) 

J(x) area moment of inertia [ m4 ] 
N(x) axial force of a beam-column (positive as tensile) [N] 

E Young's modulus [Pa] 
x longitudinal axis of a beam-column 

  
Remark. 

In place of the equilibrium Eqs. (1) and (2), the following Eqs. (5) and (6) are frequently used 
in technical literature  
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though they give incorrect diagram of the shear force ( where N(x)=N=const.), which may be 
checked up by means of the finite element method. 
 
 

 
 



 
 
 

 
 
   

3. The Generalized Mathematical Model of Bending of Straight Bernoulli-Navier       
    Beam-Columns 
The Eqs. (1) to (4) contain classical derivatives that are not defined at points of discontinuity 
of the unknowns. In order to rectify this ineffectiveness, that comes out  in practical 
calculations, we have used the distributional derivative for unknowns hence we have 
developed the generalized model of plane bending  for straight slender beam-columns, Eqs. 
(7) to (10). 
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where 
Dirac(x-ai) Dirac distribution (Dirac-delta function or unit-impulse function) at x = ai 

Fi magnitude of the ith concentrated force [N] (positive direction of a concentrated 
lateral force is downward) 

Mi magnitude of the ith concentrated moment [Nm] (positive direction of a 
concentrated moment is clockwise) 

Φi  magnitude of a jump discontinuity in slope of a Bernoulli-Navier beam-column 
in its ith internal hinge [rad] 

∆i  magnitude of a jump discontinuity in deflection of a Bernoulli-Navier  
beam-column in its ith internal sliding connection [m] 

 < 0 ai  distance between the ith concentrated lateral force and the left end  
of the beam-column [m] 

    
 < 0 bi  distance between the ith concentrated moment and the left end 

of the beam-column [m] 

    
 < 0 ci  distance between the ith internal hinge and the left end of the beam-column [m] 

    
 < 0 di  distance between the ith internal sliding connection and the left end  

of the beam-column [m] 
n1 number of concentrated lateral forces except for end ones 
n2 number of concentrated moments except for end ones 
n3 number of internal hinges 
n4 number of internal sliding connections 

T( a1 + 0) a directional limit of T(x) at x = a1 taken from the right 
T( a1 - 0) a directional limit of T(x) at x = a1 taken from the left 
M( b1 + 0) a directional limit of M(x) at x = b1 taken from the right 
M( b1 - 0) a directional limit of M(x) at x = b1 taken from the left 
φ ( c1 + 0)  a directional limit of φ (x) at x = c1 taken from the right 



 
 
 

 
 
   

φ ( c1 - 0) a directional limit of φ (x) at x = c1 taken from the left  
v( d1 + 0) a directional limit of v(x) at x = d1 taken from the right 
v( d1 -0) a directional limit of v(x) at x = d1 taken from the left 

  
 
Developing Eqs. (7) to (10), we start with composition of equilibrium equations for 
infinitesimal elements with a concentrated lateral load or with an internal kinematic pair cut 
out of a beam-column.  

    Let us suppose that the shear force T(x) has a jump discontinuity at point x = a1 of 
magnitude 

                                                 T( a1 + 0)-T( a1 - 0) = −F1                                                    (11) 

caused by a concentrated lateral force. Then the distributional derivative of T(x) would be in 
the case of only one concentrated lateral force  
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Substituting here Eq. (11), we arrive at  
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    Let the bending moment M(x) have a jump discontinuity at x = b1 of magnitude 

                                            M( b1 +0) - M( b1 -0) = M1                                                     (14)  

caused by a concentrated force couple. Then the distributional derivative of M(x) would be in 
the case of only one concentrated moment 
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Introducing here Eq. (14), we arrive at  

 
M´ =  + ( )T x ( )qm x + M1 . ( )Dirac  − x b1                   (16) 

 

   Let the slope ( )φ x have a jump discontinuity at  = x c1 of magnitude 

                                            φ ( c1 + 0) - φ ( c1 - 0) = Φ1                                                      (17) 

as a result of placing of an internal hinge. Then the distributional derivative of ( )φ x would be 
in the case of only one internal hinge 
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Introducing here Eq. (17), we come to  
 



 
 
 

 
 
   

φ ´ = 
( )M x

E ( )J x + Φ1 . Dirac (x - c1 )                                (19) 

The axial force of the beam-column is N( c1 ) at the internal hinge. Then there is a jump 
discontinuity in the shear force of magnitude N( c1 ).sin( Φ1 ) at this internal hinge of a beam-
column. Assuming that Φ1 <<1, we can use the following equation   N( c1 ).sin( Φ1 ) =  
N( c1 ). Φ1 . Introducing Eq. (19) into Eq. (13), the impulse of magnitude N( c1 ). Φ1  will 
appear automatically.      The unknown value Φ1 may be determined by means of the 
deformation condition for the internal hinge (Sobotka, 2006). 

   Let the deflection ( )v x  have a jump discontinuity at  = x d1  of magnitude 

                                             v( d1 + 0) - v( d1 -0) = ∆1                                                     (20) 

as a result of placing of an internal sliding connection. Then the distributional derivative of 
v(x) would be in the case of only one internal sliding connection  
 

                      v´ = ( )φ x + [v( d1 + 0) - v( d1 -0)] . Dirac (x - d1 ) .     (21) 

Introducing here Eq. (20), we arrive at   
 

     v´ = ( )φ x + ∆1 . Dirac (x - d1 )                                (22) 

The axial force of the beam-column is N( d1 ) at the internal sliding connection. Then there is 
a jump discontinuity of magnitude ∆1 .N( d1 ) in the bending moment at this internal sliding 
connection. Introducing this impulse into Eq. (16), we come to the final form for the 
distributional derivative of M(x) in the case of one internal sliding connection and one 
concentrated moment along a beam-column 

     M´ =  + ( )T x ( )qm x + M1 . ( )Dirac  − x b1 + ∆1 .N( d1 ).Dirac (x - d1 )             (23) 

 The unknown value ∆1 may be determined by means of the deformation condition for the 
internal sliding connection (Sobotka, 2006). 
 
 
 
4.  The Laplace Transform of the Generalized SODE of Straight Prismatic                 
     Beam-Columns with Constant Tensile Axial Force (N(x) = N) 
    
The equations (7) to (10) will be transformed as follows 
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where 

p a variable for the Laplace transform 
laplace Laplace transform operator 

laplace(f(x), x, p) Laplace transform of  f(x)  
T(0), M(0), φ (0),v(0)  constants of integration in the form of initial parameters 
 
 
 
 
5. The Laplace Transforms of Unknown Functions T(x), M(x), ( )φ x , v(x)  
 
We use a substitution  = N E J ω 2  and determine the unknown Laplace transforms of T(x), 
M(x), ( )φ x , v(x) as solution to the system of linear algebraic Eqs. (24) to (27) as follows 
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6. The General Solution to the Generalized SODE, Eqs. (7) to (10), for Prismatic     
    Beam-Columns with Constant Axial Tensile Force  = N E J ω 2

 
The unknown functions T(x), M(x), ( )φ x , v(x) may be determined by means of the inverse 
Laplace transform of Eqs. (28) to (31) as follows   
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 7.  Conclusions 
The contribution of this paper is that the generalized system of ordinary differential equations 
(7) to (10) derived for straight beam-columns holds true also for discontinuous unknown 
functions. The general solution to the generalized SODE for prismatic beam-columns with 
constant axial force is the generalization of the classical initial parameters method for 
discontinuous beam-columns, i.e. containing internal hinges or internal sliding connections. 
   The general solution (32) to (35) was found for prismatic beam-columns with constant axial 
tensile force by means of the Laplace transform method using symbolic programming 
approach. 
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