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SCALABILITY OF DOMAIN DECOMPOSITION METHODS 

J. Brož*, J. Kruis **  

Summary: Scalability of the FETI method depends on applied preconditioner. 
There are two basic preconditioners for the FETI method – the Dirichlet 
preconditioner and the lumped preconditioner. The Dirichlet preconditioner is 
mathematically optimal but its time requirements are greater than requirements of 
the lumped preconditioner. This paper deals with implementation of the lumped 
preconditioner into an open source computer code. The implementation is based 
on the MPI library and is intended for parallel processing. Behaviour of the FETI 
method is shown on several two dimensional and three dimensional numerical 
examples. The test have been computed on a cluster of PCs. 

1. Introduction 

Large scale problems are in the centre of attention of scientific and engineering community at 
this time. Very complex and detailed models of whole structures are used in numerical 
analysis. The most spread numerical method seems to be the finite element method. It 
converts the original problem described by the system of partial differential equations or by 
the minimisation of suitable functional to the solution of a system of algebraic equations. The 
number of equations depends on the applied mesh of finite elements. The finer mesh is used, 
the more equations are generated.  

There are basically two groups of methods for the solution of system of algebraic 
equations. The direct methods are based on the Gaussian elimination. The second group of the 
methods contains iterative methods. The conjugate gradient method or the GMRES method 
are examples of iterative methods. The advantage of the direct method consists in the fact, 
that the number of arithmetic operations and storage requirements are known in advance. The 
disadvantage of the direct method resides in larger storage requirements in comparison to the 
iterative methods. The disadvantage of iterative methods rests in the unknown number of 
iterations necessary for an acceptable error. There are problems, where the number of 
iterations is very high and a preconditioning has to be used. 

At this time, domain decomposition methods are very popular for solution of large 
systems of algebraic equations on parallel computers. There are many variants of the domain 
decomposition methods. This paper concentrates only on nonoverlapping methods, especially 
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on the FETI (Finite Element Tearing and Interconnecting) method introduced by Farhat & 
Roux (1991).  

2. Finite Element Tearing and Interconnecting method 

2.1. Introduction to the FETI method 

The FETI method is based on a decomposition of the original domain into smaller 
subdomains, where the continuity is enforced by Lagrange multipliers. The original 
unknowns are eliminated and the coarse problem which contains the dual variables is 
obtained. The matrices of the subdomains are symmetric, positive definite or semidefinite 
with respect to the constraints applied to a particular subdomain. Unsupported or partially 
supported subdomain leads to a singular matrix and inverse of the matrix have to be replaced 
by a pseudoinverse matrix. The coarse problem is not positive definite.  Hence the classical 
conjugate gradient method for solution of the problem cannot be used. The modified 
conjugate gradient method has to be applied for solution. More details about FETI method 
can be found in reference Farhat & Roux (1994). 

2.2. Preconditioning of the FETI method 

This paper deals with scalability of the FETI method with suitable preconditioners. In the 
literature (e.g. Farhat & Roux (1994)), there are two basic preconditioners for the FETI 
method. The optimal preconditioner which is called Dirichlet preconditioner and the 
economical preconditioner which is called lumped preconditioner.  

In order to achieve parallel scalability, the preconditioners are necessary. The economical 
lumped preconditioner is based on matrix-vector multiplication. Submatrix defined by 
interface unknowns is selected and interface parts of subdomain vectors are multiplied by this 
matrix 
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where n denotes the number of subdomains, B(s) denotes a Boolean matrix of the s-th 
subdomain. 

The Dirichlet preconditioner is more complicated because it is based on the Schur 
complements. Preliminary step therefore contains computation of the Schur complements 
which may be time and memory consuming. Ordering of nodes and unknowns is not arbitrary 
and is similar to the ordering used in the substructuring method. During the final phase of the 
FETI method, interface parts of vectors are multiplied by the Schur complements in each 
iteration 
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2.3. Implementation of preconditioners into SIFEL code 

The SIFEL code is developed at the Department of Mechanics of Civil Engineering Faculty of 
the Czech Technical University (see reference SIFEL). It is an open source code for 
mechanical, transport and coupled problems written in C language. The code works on a 
single-processor as well as multiprocessor computer. The parallel version of the code is based 
on the MPI library and distributed memory architecture is considered. 

The FETI method has been implemented earlier but without preconditioners. The lumped 
preconditioner has been implemented recently. The lumped version has been selected beacuse 
it is easier in comparison with the Dirichlet preconditioner. Multiplicity of the interface 
degrees of freedom has to be obtained because it is used in the scaling matrix. The 
multiplicity of interface DOF is the number of subdomains which share the DOF. In order to 
obtain an efficient algorithm, the nodal multiplicity, which describes the number of 
subdomains sharing the node, is assembled first and the DOF multiplicity in the second step. 
All vectors used on subdomains are rearranged because the components are split to internal or 
interface components. 

3. Numerical Experiments 

3.1. Simple 2D example 

A rectangular domain was chosen for a numerical testing of the lumped preconditioner of the 
FETI method in two dimensions.  The domain was discretized by the quadrilateral finite 
elements with two DOFs in each node. The software T3D (see T3D), which is developed at 
the Department of Mechanics at the FCE CTU in Prague, was used for discretization. Six 
different sizes of the mesh were used (50 x 50 elements, 100 x 100 elements, 150 x 150 
elements, 200 x 200 elements, 250 x 250 elements and 300 x 300 elements). The software 
t3d2psifel (see T3D2PSIFEL) was used as a mesh decomposer for dividing the finite element 
mesh into several parts. Each finite element mesh was divided into 2 – 20 parts. Dirichlet 
boundary conditions were defined at nodes with the x-coordinate equal to zero. Prescribed 
loads were modelled by nodal forces located at nodes with maximum value of x-coordinate. 
Linear elasticity and plane stress were considered for testing. 

Results obtained from numerical experiments are summarized in graphs on Fig. 1 - Fig. 10 
and Tab. 1 – Tab. 5. The number of iterations with respect to the number of nodes is shown 
on Fig. 1, Fig. 3, Fig. 5, Fig. 7 and Fig. 9. The time of whole solution with respect to the 
number of nodes is shown on Fig. 2, Fig. 4, Fig. 6, Fig. 8 and Fig. 10. The following notation 
is used in tables: 

• NN denotes the number of nodes 

• NE denotes the number of elements 

• NDOF denotes the number of degrees of freedom 

• NME denotes the number of matrix entries 

• ITER denotes the number of iterations 
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• TIME denotes the time of whole solution of problem 

The results obtained from numerical examples clearly show that the lumped 
preconditioner reduces the number of iterations in comparison with the FETI method without 
preconditioner. Simultaneously, the preconditioned FETI method takes shorter time of 
solution than unpreconditioned method which is not always true. The number of iterations 
grows only slightly with respect to the number of unknowns. The scalability of the method 
can be proved with the help of data summarized in Tab. 1 – 5. 

 
Fig. 1:  Number of iterations for 4 subdomains 
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Fig. 2:  Time of solution for 4 subdomains 

 
Fig. 3:  Number of iterations for 8 subdomains 
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Fig. 4:  Time of solution for 8 subdomains 

 
Fig. 5:  Number of iterations for 12 subdomains 
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Fig. 6:  Time of solution for 12 subdomains 

 
Fig. 7:  Number of iterations for 16 subdomains 
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Fig. 8:  Time of solution for 16 subdomains 

 

 
Fig. 9 : Number of iterations for 20 subdomains 
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Fig. 10:  Time of solution for 20 subdomains 

Tab. 1:  Decomposition of the problem into 4 subdomains 

No precond. Lumped precond. 
NN NE NDOF NME 

ITER TIME   [s] ITER TIME [s] 

10420 10000 20636 191010 171 7.610 30 3.400 

23146 22500 45988 429142 220 30.020 32 11.090 

40900 40000 81396 762470 262 68.710 32 22.680 

63589 62500 126674 1190343 282 166.050 33 53.710 

91306 90000 182008 1713412 314 307.540 33 96.200 

 

Tab. 2 :  Decomposition of the problem into 8 subdomains 

No precond. Lumped precond. 
NN NE NDOF NME 

ITER TIME   [s] ITER TIME [s] 

10627 10000 21048 192436 253 7.400 32 2.900 

23463 22500 46620 431338 317 27.140 33 8.050 

41294 40000 82182 765205 333 63.310 34 17.740 

64238 62500 127968 1194856 879 268.630 39 33.830 

92000 90000 183394 1718247 509 255.740 35 49.310 
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Tab. 3 :  Decomposition of the problem into 12subdomains  

No precond. Lumped precond. 
NN NE NDOF NME 

ITER TIME   [s] ITER TIME [s] 

10823 10000 21438 193785 377 8.880 33 2.770 

23748 22500 47190 433317 296 22.800 32 7.400 

41608 40000 82808 767380 398 59.390 34 14.720 

64611 62500 128716 1197458 335 102.700 33 28.190 

92591 90000 184574 1722361 615 278.700 36 46.970 

 

Tab. 4 :  Decomposition of the problem into 16 subdomains 

No precond. Lumped precond. 
NN NE NDOF NME 

ITER TIME   [s] ITER TIME [s] 

23897 22500 47486 434337 289 21.820 32 7.210 

41886 40000 83364 769310 381 54.310 34 14.120 

64832 62500 129156 1198982 360 102.150 33 26.930 

92853 90000 185098 1724179 442 194.550 35 43.270 

 

Tab. 5 :  Decomposition of the problem into 20 subdomains 

No precond. Lumped precond. 
NN NE NDOF NME 

ITER TIME   [s] ITER TIME [s] 

11042 10000 21874 195279 336 7.850 33 2.700 

24102 22500 47896 435756 301 20.500 33 6.900 

42127 40000 83846 770981 290 42.160 32 13.340 

93196 90000 185784 1726564 383 158.680 33 39.300 

3.2. Simple 3D example 

A cube domain was chosen for a numerical testing of the lumped preconditioner in three 
dimensions. The domain was discretized by the hexahedral finite element with three DOFs in 
each node.  The mesh generator T3D was used for discretization. Five different meshes were 
used (10x10x10 elements, 15x15x15 elements, 20x20x20 elements, 25x25x25 elements and 
30x30x30 elements). The software t3d2psifel was used for dividing the finite element mesh 
into 2-20 parts. Dirichlet boundary conditions were defined at nodes with the z-coordinate 
equal to zero. Prescribed loads were modelled by nodal forces located on the top of cube 
domain. Linear elasticity was considered for testing. 
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The results obtained from these numerical experiments are summarized in graphs on Fig. 
11 - Fig. 20 and Tab. 6 - Tab. 10. The number of iterations with respect to the number of 
nodes is shown on Fig. 11, Fig. 13, Fig. 15, Fig. 17 and Fig. 19.  The time of whole solution 
with respect to the number of nodes is shown on Fig. 12, Fig. 14, Fig. 16, Fig. 18 and Fig. 20. 
The same notation as in section 3.1 is used here. 

The results of numerical testing of the lumped preconditioner in three dimensions are 
similar to the results in two dimensions. The FETI method with the lumped preconditioner is 
more efficient than the method without preconditioner (see  Fig. 1, Fig. 3, Fig. 5, Fig. 7 and 
Fig. 9). The preconditioner leads to smaller time requirements (see Fig. 2, Fig. 4, Fig. 6, Fig. 8 
and Fig. 10).  

 
Fig. 11:  Number of iterations for 4 subdomains 
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Fig. 12:  Time of solution for 4 subdomains 

 
Fig. 13:  Number of iterations for 8 subdomains 
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Fig. 14: Time of solution for 8 subdomains 

 
Fig. 15:  Number of iterations for 12 subdomains 
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Fig. 16:  Time of solution for 12 subdomains 

 
Fig. 17:  Number of iterations for 16 subdomains 
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Fig. 18:  Time of solution for 16 subdomains 

 
Fig. 19:  Number of iterations for 20 subdomains 

74



 

 
Fig. 20:  Time of solution for 20 subdomains 

 

Tab. 6:  Decomposition of the problem into 4 subdomains 

No precond. Lumped precond. 
NN NE NDOF NME 

ITER TIME   [s] ITER TIME [s] 

4678 3375 13218 436710 197 16.590 28 9.470 

10194 8000 29196 1019880 187 57.440 29 32.610 

19026 15625 54957 1978746 247 198.380 30 102.230 

31744 27000 92256 3399114 170 416.750 31 284.930 

 

Tab. 7 :  Decomposition of the problem into 8 subdomains 

No precond. Lumped precond. 
NN NE NDOF NME 

ITER TIME   [s] ITER TIME [s] 

5010 3375 14157 447984 323 21.390 29 9.160 

10730 8000 30738 1039056 346 81.670 31 33.420 

19810 15625 57225 2007546 353 241.610 31 104.110 

32800 27000 95328 3438738 263 528.280 31 297.070 
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Tab. 8 :  Decomposition of the problem into 12 subdomains 

No precond. Lumped precond. 
NN NE NDOF NME 

ITER TIME   [s] ITER TIME [s] 

5476 3375 15522 464493 393 22.010 33 8.870 

11525 8000 33060 1068153 1621 211.240 40 26.630 

20985 15625 60711 2052237 500 212.280 35 68.720 

34902 27000 101562 3520200 773 646.050 37 159.990 

 

Tab. 9 :  Decomposition of the problem into 16 subdomains 

No precond. Lumped precond. 
NN NE NDOF NME 

ITER TIME   [s] ITER TIME [s] 

5675 3375 16071 470712 1058 46.590 37 8.900 

11963 8000 34359 1083981 522 80.860 34 24.920 

21603 15625 62520 2074800 423 173.170 34 62.530 

35878 27000 104382 3555999 860 659.240 38 143.480 

 

Tab. 10 :  Decomposition of the problem into 20 subdomains 

No precond. Lumped precond. 
NN NE NDOF NME 

ITER TIME   [s] ITER TIME [s] 

5930 3375 16863 480009 574 33.060 35 9.620 

12255 8000 35238 1094469 326 58.600 30 24.750 

22322 15625 64641 2101056 832 281.790 36 59.6400 

36492 27000 106278 3579537 613 481.000 35 28.090 
 

4. Conclusions 

The FETI method with the lumped preconditioner reduces the number if iterations as well as 
it reduces the time requirements in comparison with the FETI without preconditioner. The 
numerical examples reveal that the number of iterations during solution of the coarse problem 
grows very slowly with respect to the number of unknowns.  

In the future, the Dirichlet preconditioner is planned to be implemented. The Dirichlet 
preconditioner is mathematically optimal and it should be better than the lumped 
preconditioner. It means that it leads to the smaller number of iterations in comparison with 
the lumped preconditioner. On the other hand, time requirements of the Dirichlet 
preconditioner are greater than the time requirements of the lumped preconditioner because it 
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assembles and computes the Schur complements which is more complicated than matrix-
vector multiplication used in the lumped preconditioner. 
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