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SCALABILITY OF DOMAIN DECOMPOSITION METHODS
J. Broz*, J. Kruis™

Summary: Scalability of the FETI method depends on applieec@nditioner.
There are two basic preconditioners for the FETIthmd — the Dirichlet
preconditioner and the lumped preconditioner. Thieichblet preconditioner is
mathematically optimal but its time requirements greater than requirements of
the lumped preconditioner. This paper deals witpplementation of the lumped
preconditioner into an open source computer code implementation is based
on the MPI library and is intended for parallel m@ssing. Behaviour of the FETI
method is shown on several two dimensional andetlgiienensional numerical
examples. The test have been computed on a cbide€s.

1. Introduction

Large scale problems are in the centre of atterdfatientific and engineering community at
this time. Very complex and detailed models of vehstructures are used in numerical
analysis. The most spread numerical method seenis tthe finite element method. It
converts the original problem described by theesysof partial differential equations or by
the minimisation of suitable functional to the smn of a system of algebraic equations. The
number of equations depends on the applied meshiif elements. The finer mesh is used,
the more equations are generated.

There are basically two groups of methods for tblut®n of system of algebraic
equations. The direct methods are based on thes@ausimination. The second group of the
methods contains iterative methods. The conjugeddignt method or the GMRES method
are examples of iterative methods. The advantagbeoflirect method consists in the fact,
that the number of arithmetic operations and s®raguirements are known in advance. The
disadvantage of the direct method resides in lasg®age requirements in comparison to the
iterative methods. The disadvantage of iterativeéhoes rests in the unknown number of
iterations necessary for an acceptable error. Tlaeee problems, where the number of
iterations is very high and a preconditioning habe used.

At this time, domain decomposition methods are vpopular for solution of large
systems of algebraic equations on parallel compuilidiere are many variants of the domain
decomposition methods. This paper concentratesamiyonoverlapping methods, especially
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on the FETI (Finite Element Tearing and Intercornimgg method introduced by Farhat &
Roux (1991).

2. Finite Element Tearing and Interconnecting method

2.1. Introduction to the FETI method

The FETI method is based on a decomposition of dhginal domain into smaller
subdomains, where the continuity is enforced by rhage multipliers. The original
unknowns are eliminated and the coarse problem hwlkntains the dual variables is
obtained. The matrices of the subdomains are synan@bsitive definite or semidefinite
with respect to the constraints applied to a paldic subdomain. Unsupported or partially
supported subdomain leads to a singular matriximverse of the matrix have to be replaced
by a pseudoinverse matrix. The coarse problem tigasitive definite. Hence the classical
conjugate gradient method for solution of the peablcannot be used. The modified
conjugate gradient method has to be applied fartisol. More details about FETI method
can be found in reference Farhat & Roux (1994).

2.2. Preconditioning of the FETI method

This paper deals with scalability of the FETI metheith suitable preconditioners. In the
literature (e.g. Farhat & Roux (1994)), there am® thasic preconditioners for the FETI
method. The optimal preconditioner which is callBdarichlet preconditioner and the
economical preconditioner which is called lumpeelcpnditioner.

In order to achieve parallel scalability, the pmetitioners are necessary. The economical
lumped preconditioner is based on matrix-vector tiplidation. Submatrix defined by
interface unknowns is selected and interface mdrssibdomain vectors are multiplied by this
matrix

L -1
- n, o 0

Fi| =) B® BOT (1),
( IJ [0 Ké?} W

s=1
where n denotes the number of subdomaiﬁ%ﬁ) denotes a Boolean matrix of tlseth
subdomain.

The Dirichlet preconditioner is more complicatedcdngse it is based on the Schur
complements. Preliminary step therefore containmprdation of the Schur complements
which may be time and memory consuming. Orderingaafes and unknowns is not arbitrary
and is similar to the ordering used in the substimireg method. During the final phase of the
FETI method, interface parts of vectors are muéglby the Schur complements in each
iteration

s=1
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where n denotes the number of subdomaif®® denotes a Boolean matrix of treeth
subdomain anK Y - K®PTK &K ¢ is the Schur complement of subdomain s.
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2.3. Implementation of preconditioners into SIFEL ode

The SIFEL code is developed at the Department aftideics of Civil Engineering Faculty of
the Czech Technical University (see reference S)FHL is an open source code for
mechanical, transport and coupled problems writtel® language. The code works on a
single-processor as well as multiprocessor compuitex parallel version of the code is based
on the MPI library and distributed memory architeetis considered.

The FETI method has been implemented earlier biitowt preconditioners. The lumped
preconditioner has been implemented recently. Tihgéd version has been selected beacuse
it is easier in comparison with the Dirichlet praddioner. Multiplicity of the interface
degrees of freedom has to be obtained because usedsl in the scaling matrix. The
multiplicity of interface DOF is the number of suwains which share the DOF. In order to
obtain an efficient algorithm, the nodal multiptici which describes the number of
subdomains sharing the node, is assembled firstten®OF multiplicity in the second step.
All vectors used on subdomains are rearranged bedhe components are split to internal or
interface components.

3. Numerical Experiments

3.1. Simple 2D example

A rectangular domain was chosen for a numericaing®f the lumped preconditioner of the
FETI method in two dimensions. The domain was rdiswed by the quadrilateral finite

elements with two DOFs in each node. The softw&® {see T3D), which is developed at
the Department of Mechanics at the FCE CTU in Reaguas used for discretization. Six
different sizes of the mesh were used (50 x 50 efdsy 100 x 100 elements, 150 x 150
elements, 200 x 200 elements, 250 x 250 elements3@a x 300 elements). The software
t3d2psifel (see T3D2PSIFEL) was used as a meshhgezser for dividing the finite element

mesh into several parts. Each finite element mea$ dwided into 2 — 20 parts. Dirichlet

boundary conditions were defined at nodes withx{w®ordinate equal to zero. Prescribed
loads were modelled by nodal forces located at fi@déh maximum value of x-coordinate.

Linear elasticity and plane stress were considiretesting.

Results obtained from numerical experiments arensamzed in graphs on Fig. 1 - Fig. 10
and Tab. 1 — Tab. 5. The number of iterations wepect to the number of nodes is shown
on Fig. 1, Fig. 3, Fig. 5, Fig. 7 and Fig. 9. Timad of whole solution with respect to the
number of nodes is shown on Fig. 2, Fig. 4, Fid=i§, 8 and Fig. 10. The following notation
is used in tables:

* NN denotes the number of nodes

* NE denotes the number of elements

* NDOF denotes the number of degrees of freedom
* NME denotes the number of matrix entries

* |TER denotes the number of iterations

62



* TIME denotes the time of whole solution of problem

The results obtained from numerical examples g¢leashow that the Iumped
preconditioner reduces the number of iterationsomparison with the FETI method without
preconditioner. Simultaneously, the preconditiorfélTI method takes shorter time of
solution than unpreconditioned method which is aletays true. The number of iterations
grows only slightly with respect to the number okoowns. The scalability of the method
can be proved with the help of data summarizedain. T — 5.
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Fig. 1: Number of iterations for 4 subdomains
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Tab. 1: Decomposition of the problem into 4 subdosa
No precond. Lumped precond.
NN NE NDOF NME
ITER | TIME [s]|ITER | TIME [s]
10420| 10000| 20636 | 191010 171 7.610 3@ 3.400
23146| 22500| 45988 | 429142 220 30.020 32 11.090
40900| 40000| 81396 | 762470 262 68.710 32 22.680
63589| 62500| 126674| 1190343| 282 166.050 33 53.710
91306| 90000| 182008| 1713412 314 307.540 33 96.200
Tab. 2 : Decomposition of the problem into 8 subdosa
No precond. Lumped precond.
NN NE NDOF NME
ITER | TIME [s]|ITER | TIME [s]
10627| 10000 21048 | 192436 253 7.400 372 2.900
23463| 22500| 46620 | 431338 317 27.140 33 8.050
41294| 40000| 82182 | 765205 333 63.310 34 17.740
64238| 62500| 127968| 1194856| 879 268.630 39 33.830
92000| 90000| 183394| 1718247, 509 255.740 35 49.310
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Tab. 3: Decomposition of the problem into 12subdms

No precond. Lumped precond.
NN NE | NDOF| NME
ITER | TIME [s]|ITER | TIME [s]
10823| 10000| 21438 | 193785 377 8.880 33 2.770
23748| 22500| 47190 | 433317 296 22.800 32 7.400
41608| 40000/ 82808 | 767380 398 59.390 34 14.720
64611| 62500| 128716| 1197458 335 102.700 33 28.190
92591| 90000| 184574| 1722361 615 278.700 36 46.970
Tab. 4 : Decomposition of the problem into 16 subaiom
No precond. Lumped precond.
NN NE | NDOF| NME
ITER | TIME [s]|ITER | TIME [s]
23897| 22500| 47486 | 434337 289 21.820 32 7.210
41886| 40000| 83364 | 769310, 381 54.310 34 14.120
64832| 62500| 129156| 1198982 360 102.150 33 26.930
92853| 90000| 185098| 1724179| 442 194.550 35 43.270
Tab. 5: Decomposition of the problem into 20 subdiom
No precond. Lumped precond.
NN NE | NDOF| NME
ITER | TIME [s]| ITER | TIME [s]
11042| 10000| 21874 | 195279 336 7.850 33 2.700
24102| 22500| 47896 | 435756] 301 20.500 33 6.900
42127| 40000| 83846 | 770981 290 42.160 32 13.340
93196| 90000| 185784| 1726564 383 158.680 33 39.300

3.2. Simple 3D example

A cube domain was chosen for a numerical testingheflumped preconditioner in three

dimensions. The domain was discretized by the hexkalh finite element with three DOFs in

each node. The mesh generator T3D was used fetimtion. Five different meshes were
used (10x10x10 elements, 15x15x15 elements, 20X2@i&nents, 25x25x25 elements and
30x30x30 elements). The software t3d2psifel wasl dee dividing the finite element mesh

into 2-20 parts. Dirichlet boundary conditions welefined at nodes with the z-coordinate
equal to zero. Prescribed loads were modelled lhalnforces located on the top of cube
domain. Linear elasticity was considered for tegtin
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The results obtained from these numerical experisnare summarized in graphs on Fig.
11 - Fig. 20 and Tab. 6 - Tab. 10. The number @fations with respect to the number of
nodes is shown on Fig. 11, Fig. 13, Fig. 15, Figahd Fig. 19. The time of whole solution
with respect to the number of nodes is shown on EigFig. 14, Fig. 16, Fig. 18 and Fig. 20.
The same notation as in section 3.1 is used here.

The results of numerical testing of the lumped pnelitioner in three dimensions are
similar to the results in two dimensions. The FEW®thod with the lumped preconditioner is
more efficient than the method without precondiéofsee Fig. 1, Fig. 3, Fig. 5, Fig. 7 and
Fig. 9). The preconditioner leads to smaller timguirements (see Fig. 2, Fig. 4, Fig. 6, Fig. 8
and Fig. 10).
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Fig. 20: Time of solution for 20 subdomains
Tab. 6: Decomposition of the problem into 4 subdosa
No precond. Lumped precond.
NN NE NDOF| NME
ITER | TIME [s]| ITER | TIME [s]
4678 | 3375| 13218 436710 197 16.590D 28 9.470
10194| 8000 | 29196, 101988p 187 57.440 29 32.610
19026| 15625| 54957 | 1978746 247 198.380 30 102.230
31744| 27000| 92256 | 3399114 170 416.750 31 284.930
Tab. 7 : Decomposition of the problem into 8 subdama
No precond. Lumped precond.
NN NE NDOF| NME
ITER | TIME [s]|ITER | TIME [s]
5010 | 3375| 14157 447984 323 21.390 29 9.160
10730| 8000 | 30738 1039056 346 81.670 31 33.420
19810| 15625| 57225| 2007546 353 241.610 31 104.110
32800| 27000| 95328 | 3438738 263 528.280 31 297.070
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Tab. 8 : Decomposition of the problem into 12 subaiom

No precond. Lumped precond.
NN NE | NDOF| NME

ITER | TIME [s]|ITER | TIME [s]
5476 | 3375| 15522 464493 398 22.01p 33 8.870

11525| 8000 | 33060 10681581621 | 211.240 40 26.630
20985| 15625| 60711 | 2052237 500 | 212.280 35 68.720
34902| 27000 101562| 3520200] 773 | 646.050 37 159.990

Tab. 9 : Decomposition of the problem into 16 subaiom

No precond. Lumped precond.
NN NE NDOF NME
ITER| TIME [s]|ITER | TIME [s]
5675 | 3375| 16071 470712 10%8  46.590 37 8.900

11963 8000 | 34359| 108398[ 522 80.860 34 24.920
21603| 15625| 62520 | 2074800 423 173.170 34 62.530
35878| 27000| 104382| 3555999 860 | 659.240 38 143.480

Tab. 10 : Decomposition of the problem into 20 subaiom

No precond. Lumped precond.
NN NE NDOF NME
ITER | TIME [s]|ITER | TIME [s]
5930 | 3375| 16863 480000 574 33.060D 35 9.620

12255 8000 | 35238| 1094469 326 58.600 30 24.750
22322| 15625| 64641 | 2101056 832 | 281.790 36 59.6400
36492| 27000| 106278| 3579537| 613 | 481.000 35 28.090

4. Conclusions

The FETI method with the lumped preconditioner msduthe number if iterations as well as
it reduces the time requirements in comparison with FETI without preconditioner. The
numerical examples reveal that the number of itmmatduring solution of the coarse problem
grows very slowly with respect to the number of nokns.

In the future, the Dirichlet preconditioner is pted to be implemented. The Dirichlet
preconditioner is mathematically optimal and it @llo be better than the lumped
preconditioner. It means that it leads to the senalumber of iterations in comparison with
the lumped preconditioner. On the other hand, timguirements of the Dirichlet
preconditioner are greater than the time requirésnehthe lumped preconditioner because it
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assembles and computes the Schur complements whiclore complicated than matrix-
vector multiplication used in the lumped precorafigr.
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