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DECOMPOSITION BASED ON COCHLEA FUNCTION PRINCIPLE 
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Summary: This paper is concerned with time non-stationary signal 
decomposition based on the cochlea function principle. The mathematical model 
of array of resonators is described and also results obtained from this model are 
presented. The results from mathematical model are also compared with results 
calculated by Short Time Fourier Transformation.      

1. Introduction 

Cochlea is that part of the inner ear where acoustic signals incoming from outer air space are 
convert to electric signals. Pressure travelling waves in inner ear fluid space are generated by 
forcing of foot stapes to scala vestibuli. The travelling waves in fluid medium consequently 
excite also travelling waves on basilar membrane where sense organs are located. From the 
point of view of mechanics of hearing is very important that locations of the maxima of 
travelling waves on basilar membrane are frequency dependent. Low frequency tones excite 
basilar membrane near its apical end. With the increasing of frequency the maxima of 
travelling waves are moving to the basal end. This effect is caused by varying cross section 
and following varying longitudinal stiffness of the basilar membrane. The inner ear functions 
like a mechanical analyzer which is able to decomposes time-nonstationary signals to single 
frequency components in real time. This principle of inner ear function was verified by 
experimental measurement „in situ“ on human cadavers (Békésy 1960)  or on physical 
models (Chen 2006)  and also by mathematical modelling (Givelberg 2003, Dušek 2004, 
Nobles 2001). 

2. Goal of the work 

The cochlea is mechanical analyzer which decomposes input signal into separate frequency 
components and simultaneously it is filter which pass only frequencies in range from 20Hz to 
20kHz.  

The goal of this wok will be design of device that working on the cochlea function 
principle that means device which will be able to decompose whatever non-stationary signal 
in real time. This device will be designed in relation to possibilities of the MEMS technology. 
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One possibility of principle of mechanical analyzer is an array of isolated masses with 
springs. Different natural frequency will correspond to every mechanical system mass-spring. 
When the field of isolated masses is actuated, then the masses having their eigenfrequencies 
same like frequencies included in a forcing signal will start resonating.    

3. Mathematical model 

The basic principle of the mechanical analyzer is shown on the figure 1. The analyzer is 
compound for array of resonators and if this array of resonators is actuated by signal which is 
compound from different frequency components, so only those resonators will vibrate whose 
eigenfrequencies are equal to frequencies compound in actuated signal.  

 

 

Fig. 1: Principle of signal decomposition based on the array of resonators. 
 

 

Motion of every resonator can be described by differential equation of second order: 

                                                    mi qi
.. + bi (qi

.-qz
.) + ki (qi-qz) =  0,                                  (1) 

where mi is mass of i-th resonator [kg], bi is viscous damping of i-th resonator [Ns/m], ki is 
stiffness of i-th resonator [N/m] , q is displacement [m] of mass of i-th resonator and qz is 
displacement [m] of  kinematic excitation.    

The Eq1. can be rewrited into form : 

                                                qi
.. + 2 ζi Ωi qi

. + Ωi
2 qi = bi qz

. + ki qz ,                               (2) 

where ζi = bi/(2 (ki mi)
0.5) is damping ratio and Ωi

2
 =ki/mi is eigenfrequency of the i-th 

resonator.  The array of resonators can be simulated by series of calculation for same exciting 
signal but for different values of stiffness or mass of resonator whereby it can be changed the 
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eigenfrequencies of resonators. Solution of the eq.2 for resonator which is actuated by 
frequency equal to its eigenfrequency is: 

                                                             Aqi = ( Aqzi mi Ωi )/ bi ,                                          (3) 

where Aqi is amplitude of mass displacement of i-th resonator and Aqzi is amplitude of 
frequency component which is contained in input signal and which is equal to eigenfrequency 
of the i-th resonator.  

4. Results 

Known test function for verification of the mathematical model was solved first. The test 
function was sinusoid signal with fluently varying frequency from 40-80 rad/s (it is 6,4-12,7 
Hz) and may be described by this equation: 

                                                 qz = Aqz  cos ( ( ω t ) + (a sin ( t ) ) ),                                (4) 

where Aqz=1[m] is amplitude of input exciting signal,  ω=60 rad/s is angular frequency, 
a=20 [-] is constant, t=0..15 s is time. The parameters of the resonators were following: mass 
of all resonators was same m=1kg, viscous damping was also same for all resonators b=5 
Ns/m. Stiffness of resonators was varied with value from 400 N/m to 10000 N/m.The 
spectrogram of input test signal calculated by array of resonators is displayed on the figure 2.  

The spectrogram of input test signal calculated by Short time Fourier Transformation 
(STFT) is shown on the figure 3. The parameters for STFT analysis was following: sampling 
frequency fs = 100 Hz, length of the signal N = 1500 [-], length of the segment window Nw = 
128 [-], overlap of segments Nov = 127 [-]. Comparison of results from STFT and from array 
of resonators shows that array of resonators give better resolution than the STFT in test signal 
decomposition.  

After verification of mathematical model function was made also analysis of non-
stationary signal which is shown on figure 6. This is default signal in Matlab SPTool under 
name mtlb. Total length of this signal is 0.54s with sampling frequency fs=7418Hz. 

Spectrogram of mtlb non-stationary signal calculated by model of array of resonators is 
shown on figure 4. The parameters of the resonators were following: mass of all resonators 
was same m=1kg, viscous damping for all resonators b=50 Ns/m. Stiffness of resonators was 
varied with value from 40 kN/m to 529000 kN/m.  

Spectrogram of mtlb non-stationary signal calculated by STFT is shown on figure 5. The 
parameters for STFT analysis was following: sampling frequency fs = 7418 Hz, length of the 
signal N = 4001 [-], length of the segment window Nw = 512 [-], overlap of segments Nov = 
500 [-].  

The figures 4 and 5 show very similar results in signal decomposition. The simulation of 
array of resonators also showed that it is necessary to use high viscous damping for good 
signal decomposition.    
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Fig. 2: Spectrogram of input test signal calculated by array of resonators 

 

 

 

Fig. 3: Spectrogram of input test signal calculated by Short Time Fourier Transformation 
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Fig. 4: Spectrogram of input Matlab default signal mtlb calculated by array of resonators 
 

 

 

Fig. 5: Spectrogram of input Matlab default signal mtlb calculated by Short Time Fourier 
Transformation 
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Fig. 6: Analyzed non-stationary default Matlab signal mtlb  
 

5. Conclusions 

The results of this work should used for design of a mechanical analyzer for real time 
decomposition of any time-dependent signals based on MEMS technology. Simulation of 
array of resonators gives very similar results like Short Time Fourier Analysis. Results of 
simulation of array of resonators also showed that it is necessary to use quite high viscous 
damping for good signal decomposition.  
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