
National Conference with International Participation

engineering mechanics 2008

Svratka, Czech Republic, May 12 - 15, 2008

Simulation of Fracture Process Using Spring Networks
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Summary: The paper deals with a fracture simulation of a concrete. A spec-
imen volume is discretized using two different types of spring networks - a truss
lattice and a rigid-body-spring network. The first model is valuable for its sim-
plicity, nodes are interconnected by ideally brittle springs bearing only an axial
force. The paper shows that such model is not suitable for more difficult type
of load (mixed-mode experiments). The second type, the rigid-body-spring
network, is able to simulate fracture process even for mixed-mode experiments
and does not loose a physical explanation for any part of modeling procedure.
Unfortunately, both models exhibit a mesh size dependency, which is described
in the paper via an extensive parameter study.

1. Introduction

A modeling of a fracture in disordered materials (like concrete) is under intensive
research during last decades. Lattice simulations appear as a promising approach focused
primarily to obtain a correct shape of a crack. Since the material structure is included
in a model directly, one therefore can use very simple constitutive laws. Particulary these
spring network models used to have originally brittle constitutive law for every spring.
With such constitutive law one can simulate the crack pattern but to fit an experimental
response, many researchers adopted softening (Berton and Bolander (2006), Ince et al.
(2003)). Other progress has been done from mechanical point of view. The truss lattices
were substituted by beam lattices or rigid-bodies . Moreover, many two dimensional
lattice models were recently adapted into three dimensions (Yip et al. (2005), Lilliu and
van Mier (2003)).

The paper is concerned with modeling of plain concrete at meso-level that provides
a realistic simulation of a fracture process in a laboratory specimen scale. In particular,
two types of a model are studied: a truss lattice model (beams carry only normal forces)
and an assembly of rigid cells interconnected by normal and shear springs. This con-
cept was originally proposed by Kawai (1978). Both models have an irregular (random)
geometry and spring properties are assigned by overlapping the model with a structure
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of aggregates generated randomly according to given grain size distribution. The original
aim of such models is not to match experimental data or to find material parameters.
The most important goal is the ability to simulate a real fracture process with simple
brittle constitutive laws in a step-by-step linear calculation. A nonlinearity of a fracture
in concrete is included directly inside the model via the overlapped aggregate structure.

2. Modeling framework

Both models are built in a similar way - first nodes of lattice are generated and
interconnected by springs, then the aggregate structure is used to determine material
phases and parameters of these brittle springs. Finally a function evaluate spring strains
from nodes displacements has to be determined.

The nodes are generated pseudo randomly after Moukarzel and Herrmann (1992) to de-
crease mesh shape dependency (van Mier (1997)). A domain is divided into rectangular
cells of size s and subsequently one node is randomly chosen chosen for each cell. A ran-
domness of a node position can be controlled by the parametr t ∈ 〈0, s〉 (fig. 1). When
t = 0 regular node positions are obtained. A node connectivity is determined by De-
launay triangulation. This triangulation provides triangles with the largest inner angles.
Many fast algorithms have been invented to generate this triangulation (for instance Sloan
(1993)). In case of the truss lattice, each edge of the triangulation represents one normal
spring. When the concept of rigid bodies is used shear and normal springs are placed
into the model instead. To ensure elastically uniform lattice (Schlangen and Garboczi
(1996), Bolander and Saito (1998)), we use Voronoi tessellation to find areas of springs.
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Fig. 1: Left: a generating of the network nodes (according to van Mier (1997)). Right:
an example of Delaunay triangulation and Voronoi tessellation of the domain.

A material inhomogeneity is applied by an overlapping aggregate structure. This
structure could be obtain by scanning material surface or generated in a computer. An al-
gorithm used in this paper to generate aggregate structure has two main steps: the for-
mer step consists of calculating numbers of grains with certain diameters. The latter
involves placing grains into the volume. Amounts of grains are given by Fuller curve
Fd = (d/dmax)

0.5 (see fig. 2). One has to determine maximal diameter dmax, usually ac-
cording to real batch grain contents. The minimal diameter d1 is set out together with
a mesh size (the size of one cell s in the node placing algorithm) because after van Mier
(1997) the size of the mesh should be at least three times smaller then the minimal ag-
gregate diameter. Then the random sequential addition (Widom (1966)) is used to find
positions of grains in a specimen volume.
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Fig. 2: Left: Fuller curve provides an amount of grains for certain diameters (after Cusatis
et al. (2006)); middle: aggregates are placed inside a specimen via random sequential
addition; right: three material phases are determined according to node coordinates.

When geometrical parameters of the spring network and the aggregate structure are
determined material parameters of the springs can be set out. Three material phases
are distinguish: aggregate, matrix and interface. The spring having both nodes in matrix
are classified as the matrix phase, in the same way the aggregate phase springs are found.
Springs with one node in the matrix and second one inside some aggregate come under
the third interface phase.

Material parameters of phases were determined with a help of literature. Lilliu and
van Mier (2003) suggested elastic moduli E and tensile strength ft of phases and ratio
between these suggested numbers has been verified by measuring acoustic emissions
during fracture process (Bolander et al. (1998)). The material parameters used in this
paper are: Ea = 70 GPa; Em = Ei = 25 MPa; ft,a = 24 Mpa; ft,m = 12 Mpa; ft,i = 4 Mpa.
Also shear modulus Es and shear strength fs have to be determined in case of the rigid-
body-spring network (here Es = E/4 and fs = 3/2ft for all phases).
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Fig. 3: Nodes of lattice interconnected by springs. Left: the truss lattice, two degrees
of freedom per each node; right: the rigid-body-spring network, three degree of freedom
per each node.

The following section explains the main difference between considered lattice types.
The truss element bears only normal strain εn that can be simply evaluated using an ac-
tual change of spring length εn,k = δn,k/lk. The length lk is an original length of spring k
and the actual length change δn,k is obtained from nodal displacements u and v (fig. 3).
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However, the concept of rigid-body-spring network includes nodal rotations. The dis-
placements δn,k and δn,k of element k are evaluated according equations 1, 2, which are
derived from a motion of the rigid bodies. The position of both normal and shear springs
is assumed in the middle of Voronoi tessellation edge (fig. 4).

δn,k = (uj − ui) · cos αk + (vj − vi) · sin αk + (fi − fj) · pk (1)

δs,k = −(uj − ui) · sin αk + (vj − vi) · cos αk − (fi − fj) · lk/2 (2)

Strains are then evaluated in ordinary way εn,k = δn,k/lk, εs,k = δs,k/lk.
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Fig. 4: Left: the motion of rigid bodies, variables description; right: the elemental break-
ing envelope for different material phases.

A solution of fracture process proceeds in events. In each event one element breaks.
In order to find this element, one needs breaking condition (envelope) to determine utiliza-
tion of each connection. In case of the truss lattice, the element breaks when the normal
stress is higher then the tensile strength (σn > ft). The breaking envelope for the rigid-
body-spring network is plotted in fig. 4 right. The normal and shear stresses are confined.

The global stiffness matrix is built on the beginning of solution process. Then task
proceeds in linear steps (events). One step of the solution has five points:

• The load is applied by a vector of prescribed initial displacements and initial nodal
displacements are calculated. The solving of this system of linear equations is a cru-
cial point because of time consumed on this row of a code implementation. So ad-
vanced iteration techniques are employed, in this case the preconditioned conjugate
gradients method.
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• Subsequently the initial strains and stresses are evaluated. Then utilization ξ of each
element is calculated according to breaking conditions.

• The element eξ,max with maximal utilization ξmax is found.

• The whole solution (the initial nodal displacements, the initial nodal forces) is di-
vided by utilization ξmax to ensure that the stress state of edge eξ,max will lie exactly
on the envelope curve.

• The element eξ,max is remove from stiffness matrix (crack propagation).

Except of a sequence of broken elements one can record also a response of the model.
In this paper an overall displacement (displacement between supports) is used to present
response of virtual specimens. Obtained load-displacement curve consists of many linear
steps which has to be smooth (fig. 5).
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Fig. 5: The response consists of many linear steps. Only steps with increasing prescribed
displacement are accepted.

3. Applicability for uniaxial tensile test and mixed-mode test

Almost no articles dealing with the truss lattice models are published today. A general
reason for that is that networks built from beams bearing bending moment give more
realistic crack pattern (Schlangen and Garboczi (1997)). Using beams bearing bending
moment at the concrete meso-level structure has no physical explanation. The rigid
bodies are able to transfer bending moment with physical background. The truss lattice
is a logical choice to begin with lattice simulations and that is the reason to mention it
here.

Figure 6 shows fit of the uniaxial tensile test with pure truss lattice. Unfortunately,
experimental data are damaged probably because of incorrect measuring device setting.
The ability of the truss lattice to provide right response curve shape is obvious even when
recorded displacements are unrealistic high. This quasi brittle response was obtained only
by cracking ideally brittle truss elements.
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Fig. 6: A record of the uniaxial tensile test and a corresponding simulation using the truss
lattice model. A discrepancy between displacements measured during experiment and
simulated displacements is probably caused by an incorrect setting of measuring device.

Limits of the truss network are shown on mixed-mode experiments. The truss lattice is
not capable to describe the real crack propagation (two angled cracks from both notches).
The rigid-body-spring network works well in that case - see fig. 7.

Fig. 7: An ability to simulate the crack pattern for two lattice model types. Left: the truss
lattice; right: the rigid-body-spring network.

Mixed-mode tests from literature (Nooru-Mohamed (1992), load path 6a) were sim-
ulated using rigid bodies. The concrete batch included only aggregates with a diameter
less then 2 mm. But aggregates with diameters d ∈ 〈4mm, 2mm〉 were generated because
of computational difficulties. Otherwise the network would be too fine and a computa-
tional time extremely long. Three specimen sizes were considered, the large specimen
200×200×50 mm with a notch 25 mm on both sides, the middle specimen 100×100×50
mm with a notch 12.5 mm on both sides and the small one 50×50×50 mm with a notch
6.25 mm on both sides. These specimens were loaded by prescribed normal and shear
displacement in the rate of 1:1 simultaneously. Different mesh sizes were used. Because
of computational time only coarse network was applied for large specimen. Responses
and crack patterns are plotted in figure 8. Lattice responses are too brittle in comparison
with real responses but crack shapes and an occurrence of vertical compressive force are
in good agreement.
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Fig. 8: Responses and crack patterns of virtual specimens subjected to the mixed-mode
loading according to Nooru-Mohamed (1992).

4. Network size dependency

Perhaps the most obvious disadvantage of described lattice approach is a network size
dependency. Because the solution proceed in discrete steps a change of one broken element
can cause entirely different following sequence of broken elements. The other source
of this dependency is a representation of stress distribution in notch areas. A coarse
mesh leads to stress averaging but in case of fine mesh stress is concentrated in small
area close to the notch. In order to describe the mesh dependency several simulations
of the uniaxial tensile test have been done. A specimen size were constant 50 × 50 × 50
mm with noth 6.25 mm on both sides, aggregates diameters were in range from 6 mm to 2
mm. The aggregate structure were kept the same in all cases. Five network sizes were
used: 1.00 mm, 0.50 mm, 0.33 mm, 0.25 mm and 0.20 mm. The coarsest mesh 1 mm
strongly breaks size condition (mesh size should be at least one third of the smallest grain
diameter). Responses and obtained crack patterns are presented in figures 9 and 10.
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Fig. 9: Responses measured during uniaxial tensile test simulations for various network
sizes. The disordered material includes aggregate structure which is identical for all
simulations.

Several conclusions can be done with help of this study. Both types of lattice models
exhibit strong mesh size dependency in case of homogenous material which is probably
caused by the stress representation around notches. The reason for this conclusion is that
disordered material decrease this dependency. Perhaps because the aggregate structure
has the main influence on crack propagation and notch effect diminishes. Unfortunately
other complication appears in case of disordered material. It is obvious that a crack shape
for identical aggregate structure depends on mesh size. That is again caused by differ-
ent representation of stresses, now around grains. Study also displays another problem.
The model works on concept of small deformations which can caused unrealistic frac-
ture propagation (fig. 10, mesh size 0.20 mm, rigid-body-spring network, homogenous
material). Elements with ”bad” orientation can bear more load than others. Finally
an interesting effect is visible in case of homogenous material for truss lattice. Unrealistic
crack shape for network size 1 mm becomes better for finer meshes. It looks also that
response converges to some certain solution. This points to examine abilities of extremely
fine truss lattices. But such examination runs against an extreme computational effort.
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Fig. 10: Crack patterns of virtual specimens subjected to uniaxial tension. Numbers
of cracked elements from each phase are plotted.

5. Aggregate structure influence

An influence of aggregate structure has been studied as well. A set of grains was
generated and five different positions of grains from that set were found. The results are
plotted in figures 11 and 12. Response differences are within an expected scatter.
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Fig. 11: Responses measured during uniaxial tensile test simulations for various aggregates
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Fig. 12: Crack patterns of virtual specimens subjected to uniaxial tension with variable
grain positions. Numbers of cracked elements from each phase are plotted.

6. Conclusions

The paper shows the ability of lattice models to simulate a fracture process. A partic-
ular description of the truss lattice model and the rigid-body-spring network is presented.
A capability to simulate the uniaxial tensile test and the mixed-mode test is verified.
The simple truss model is able to represent the tensile tests; however one cannot ob-
tain a correct crack pattern for mixed-mode tests. On contrary, the rigid body network
model works well even in the mixed-mode situation. Also the mesh size dependency and
the influence of aggregate positions were examined and described.
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