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Summary: A number of papers have aimed at an analytical solution of an axial 
annular flow of power-law fluids, especially a relation: volumetric flow rate vs. 
pressure gradient. No complete analytical solution has been yet achieved. The 
only analytical solutions - that have been hitherto derived - concern the limiting 
cases of a geometrical parameter κ (inner-to-outer diameters ratio) or a flow 
behaviour index n. The present contribution discusses an applicability of these 
limiting solutions for a broader region of entry parameters and proves that in 
many cases usage of these relations is fully acceptable (and comparable with an 
inaccuracy in experimental determination of flow behaviour index n and 
consistency parameter k of a power-law model).  

1.   Introduction 
The flow of non-Newtonian fluids through an annulus is often encountered in various 
industrial processes such as transportation of drilling fluids in petroleum industry and 
extrusion of polymers (in a mandrel region). 

Roughly speaking there are two approaches how to cope with the description of these 
flow situations. The numerical approach aims at a calculation of the quantities (e.g. velocity 
components, flow rate) describing the concrete problem, and with an arbitrary change of the 
entry parameters (geometry, kinematics, rheological characteristics) it is necessary to repeat 
the whole procedure from the beginning.  

The other approach lays emphasis on the functional participation of the individual entry 
parameters in the whole solution. This method enables to decide which parameters should be 
altered (and in which way) to obtain the more favourable results e.g. from the viewpoint of 
production rate. In this case the optimum approach is represented by an explicit solution. 
However in more complicated problems the chance to obtain an explicit solution is rather 
limited.  

In the annular flow one of the most difficult complications consists in the inhomogeneous 
distribution of shear stresses in the annular region.  

Starting with a paper by Fredrickson & Bird (1958), a derivation of the analytical relation 
volumetric flow rate vs. pressure gradient for steady laminar isothermal flow of 
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incompressible axial annular flow of power-law fluids (see Fig.1) with no-slip at the 
boundaries has become an intensively studied topic up to now (for references see e.g. 
Escudier et al. (2002), Filip & David (2004)). Unlike laminar Newtonian flow, where 
complexity is almost exclusively due to geometric conditions of the given problem, for 
laminar non-Newtonian flow this complexity is intensified by nonlinear dependence between 
shear stress and shear rate. 

A power-law model is governed by the relation 

                                                         1 ;n zdvk
dr

τ γ γ γ−= − =  (1) 

where n represents a flow behaviour index, k a consistency parameter, vz an axial velocity 
component (see Fig.1). 
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Fig.1:  A definition sketch. 

 

Each hitherto published semi-analytical solution encounters the problem how to 
determine a parameter λ, where λR represents a radial location of maximum of axial velocity 
component and simultaneously a point where shear stress nullifies.  

Hanks & Larson (1979), and Prasanth & Shenoy (1992) independently (using different 
approaches) derived a relation 
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where Qax stands for a volumetric flow rate, P is a pressure drop defined as a change of 
pressure per unit of length (ΔP/L). The parameter λ is necessary to determine numerically 
from an integral equation introduced already in Fredrickson & Bird (1958) 
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The term in the square brackets (rel.(2)) represents a weight function reducing an axial 
annular flow rate from that through a pipe given by the two remaining terms in rel.(2). 

There are approximately three possibilities how to eliminate a necessity to solve 
numerically the integral equation (3) 
1)  to express an approximate relation for the parameter λ; 
2)  to propose a fully analytical (algebraic) form Qax vs. P eliminating λ; 
3)  determination of quasisimilarity transformations providing almost exact relation Qax vs. P 

in a broad region of entry parameters. 
 

ad 1)  

Substituting the approximate relations for pseudoplastic fluids 
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and dilatant fluids 
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proposed by David et al. (1992) into rel.(2) the deviations of Qax from the exact values do not 
exceed 4% for a pseudoplastic case (κ ≥ 0.5, 0.1 ≤ n ≤1) and 0.15% for a dilatant case 
 (0 < κ < 1, n  ≥ 1). 
 

ad 2)  

David & Filip (1996) proposed an explicit approximate algebraic expression relating 
volumetric flow rate with pressure gradient in the form 
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where for pseudoplastic fluids 
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and for dilatant fluids 
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A deviation of these expressions from the exact values for 0.025 < κ < 1 in the whole 
pseudoplastic region 0 < n < 1 does not exceed 2.15%. For 0.5 < κ < 1 the deviation is even 
less than 0.4%; for 0.6 < κ <1 less than 0.16%. In the case of dilatant fluids the situation is 
even better, the deviation does not exceed 1.5% for 0.025 < κ  < 1 and 0.1% for 0.4 < κ < 1. 
 

ad 3)  

The given problem is also possible to treat from the viewpoint of the similarity behaviour. It 
was shown (David & Filip, 1994) that a relation Qax vs. P exhibits various features of 
similarity behaviour – not in an exact form but only approximately (it implies the term 
‘quasisimilarity’). Nevertheless, even this ‘weak’ similarity enables one to derive a 
‘universal’ solution which is possible to rewrite to a concrete form for given entry parameters 
by means of certain derived transformations. This fully eliminates the role of the parameter λ; 
however, quasisimilarity is not valid in the whole range of entry parameters κ, n (it was 
shown in the region κ ≥ 0.4 and (1-κ)1.8/n ≤ 2.44). In this connection it is still necessary to 
have in mind that the notion ‘exact solution’ is only hypothetical with respect to the 
approximate determination of the entry rheological parameters k and n. 

2.  Limiting cases 

Parallely to the papers referred to in ad 1), 2), 3), there is a group of the papers using for a 
determination of the relation Qax vs. P the limiting values of the parameter λ(κ,n) both for A) a 
flow behaviour index n and B) an annular aspect ratio κ. 

ad A)  limiting values of the parameter λ(κ,n) both for a flow behaviour index n 
In the case of a flow behaviour index n Vaughn (1963) proved that for all aspect ratios κ the 
following relations are exact 
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It implies that for power-law fluids whose behaviour approaches that of solid-like 
materials (see e.g. Sitzer & Durban, 1983) it is possible to use rel.(11) as a first 
approximation. 

Rel.(12) valid for Newtonian liquids was applied by Luo & Peden (1990) as an 
approximation for power-law fluids because no exact solution of rel.(3) is known for n≠1. In 
this case the deviation of the approximate value of λ (rel.(12)) from the exact one does not 
exceed approximately 3% in the region 0.3 < κ < 1 and 0.5 < n < 1 as illustrated by Luo & 
Peden (1990, Fig.1). 

Rel.(13) indicates that for strongly dilatant fluids a location of the parameter λ for any κ  
roughly corresponds to its location for the case of parallel-plate geometry.   

ad B)  limiting values of the parameter λ(κ,n) for an annular aspect ratio κ 

In the case of an annular aspect ratio κ there are two limiting cases, either κ→0 (pipe flow) or 
κ→1 (flow between parallel plates) for which    
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A combination of the flow situations under which there are valid rels.(13,14) elucidates 
why for a description of dilatant fluids in a narrow annular gap an application of the relation 
λ(κ,n)=(1+κ)/2 is fully justified and provides almost exact results. 

3.  Solution for a parallel-plate geometry as a starting point 
In this case there is no problem with a determination of the parameter λ, moreover this 
formulae does not depend on a flow behaviour index n  

                                                           1( , )
2par pl n κλ κ +

=    .      (15) 

There are approximately four papers trying to use a solution for the parallel-plate 
geometry for that through an annular passage. 

1st application 

Worth (1979) studied the deviations of the exact solutions Q vs. P from those for an 
equivalent parallel-plate geometry (i.e. a width between the parallel plates corresponds to a 
clearance between the cylinders) for the following four cases of concentric annular flows: 
tangential drag flow, tangential pressure flow, axial drag flow, and axial pressure flow. In his 
analysis of axial pressure flow he concentrated to a region 0.5 ≤ κ ≤ 1, and n = 1/5, 1/4, 1/3, 
1/2, and 1. His choice of the individual n's as the reciprocal values of the natural numbers 
reflects the results of Fredrickson & Bird (1958) as rel.(2) was not yet known. Worth (1979, 
Fig.8) compared graphically the flow rate Qax(κ,k,n,λ,P) for a given annular geometry, 
pseudoplastic power-law fluids and pressure drop with the corresponding flow rate 
Qpar pl(W,k,n,P) for a parallel plate geometry (with a width W=(1-κ)R, λ=(1+κ)/2). He showed 
that the ratio Qax/Qpar pl monotonously decreases (from the value 1) with decreasing annular 
aspect ratio κ and flow behavior index n, but for greater κ and n this ratio is very close to one. 
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2nd application 
Bird et al. (1987) succeeded in eliminating the parameter λ from a relation Qax against P using 
a variational method supposing one-parametrical velocity profile. However, their relation is 
only approximate. It seems that there is no possibility to improve their result using two- or 
multi-parametrical velocity profile as the resulting algebraic equations for determination of 
individual variational parameters are more complex than the original integral equation for a 
determination of λ  (rel.(3)). In fact, their resulting relation (see rel.(4.3-37), p.203) 
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coincides with the relation for volumetric flow rate between parallel plates (rel.(3-101), p.102 
in McKelvey, 1962). As stated in Bird et al. (1987) the inaccuracy of rel.(16) related to the 
exact rel.(2) is less than 2% for κ≥0.5, n≥0.5; this deviation corresponds to Fig.8 in Worth 
(1979).  

3rd application 
Tuoc & McGiven (1994) proposed a generalised Mooney-Rabinowitsch equation 
(independent on a specific non-Newtonian constitutive model) respecting the limiting cases of 
flow in cylindrical pipes and between parallel plates. This equation was tested applying a 
power-law model and examined using the experimental data in an annular flow. 

4th application 
Based on the quasisimilarity behaviour of axial annular flow (David & Filip, 1994), i.e. the 
continuous convergence (for κ→1) of flow to the parallel-plate flow, in other words 
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it is possible to propose the approximate relation 
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for volumetric flow rate of axial annular flow, see David & Filip (1995). This algebraic 
relation does not explicitly depend on the relative radial location λ of the maximum velocity, 
and eliminates thus the necessity of computation of the integral equation (3). The relative 
deviations do not exceed 3.5% in the region  κ ≥ 0.1, n  ≥ 0.1; for  κ ≥ 0.1, n ≥ 0.6 or κ ≥ 0.4, 
n ≥ 0.1 the relative deviations are less than 1%. 

4.  Results and Discussion 
The above analysis proves that not always it is indispensable to apply numerical procedures 
for calculating a set of integro-differential equations describing the balance equations of the 
chosen problem, as e.g. a flow through a concentric annulus. Sometimes it is more efficient to 
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compare a deviation of the limiting case (parallel-plate geometry) from the exact values and 
to 'suppress' this discrepancy through a weight function, see rel.(18). This approach gives the 
possibility to determine how the individual entry parameters influence the resulting relation 
volumetric flow rate vs. pressure drop, and thus how to simply encounter the demands from 
practice. If in rel.(18) we compare the relative deviations (less than 3.5%) in the region  κ ≥ 
0.1, n ≥ 0.1 with the experimental errors in determining flow behaviour index n and 
consistency parameter k, we can conclude that the proposed relation (18) is from the practical 
point of view fully acceptable. 
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