

National Conference with International Participation

ENGINEERING MECHANICS 2008
Svratka, Czech Republic, May 12 – 15, 2008

PRECONDITIONING OF THE CONJUGATE GRADIENT METHOD
BASED ON AGGREGATION

J. Kruis * , P. Mayer **

Summary: Efficient solvers for large systems of algebraic equations are still in
the center of attention because time devoted to the solution of such systems is the
main part of computational time. This contribution deals with preconditioning of
the conjugate gradient method by the aggregation method. The preconditioning
described is useful especially for very ill-conditioned problems which lead to
thousands of iterations. Unknowns are aggregated to non-overlapped aggregates
and a smoothing procedure is used for generation of the overlap. Correction
operators are defined and used for computation of the new residual in the
conjugate gradient method. Several plate problems are solved and results are
summarized at the end of this paper.

1. Introduction
Solution of systems of algebraic equations is a very important part of any analysis based on
the finite element method. Especially if the system is large, a suitable method has to be used
in order to obtain results within reasonable time. The extremely large systems are usually
solved by an iterative method which is equipped with a preconditioner. Efficient
preconditioners are usually based on a direct method.

The direct methods are based on the Gaussian elimination algorithm. Exploitation of system
properties leads to particular methods such as the LL factorization, the LDL factorization and
the LU factorization. It is possible to compute or estimate the number of needed arithmetic
operations and cancellation errors occur very rarely. On the other hand, there is the so-called
fill-in phenomenon which causes relatively high demands on computer memory, especially in
three-dimensional problems. Details about the direct methods can be found in references
(Duff et al, 2003; Golub & Van Loan, 1996; Meurant, 1999).

The iterative methods are usually based on a matrix-vector multiplication which results in
significant advantage of low computer memory demands. The biggest disadvantage comes
from the unknown number of iterations needed for achievement of the prescribed error. There
are only estimates of the number of iterations which are usually based on the condition
number of the system matrix. Unfortunately, there are many problems with the very large

* Doc. Ing. Jaroslav Kruis, Ph.D.: Department of Mechanics, Faculty of Civil Engineering, Czech Technical
University in Prague, Thákurova 7; 166 29 Prague; tel.: +420 224 354 580, fax: +420 224 310 775; e-mail:
jk@cml.fsv.cvut.cz
** Doc. Dr. RNDr. Petr Mayer: Department of Mathematics, Faculty of Civil Engineering, Czech Technical
University in Prague, Thákurova 7; 166 29 Prague; tel.: +420 224 355 465, fax: +420 233 332 732; e-mail:
pmayer@mat.fsv.cvut.cz

473

condition number and really many iterations are necessary in order to attain prescribed
error.

Preconditioning is an improvement of the iterative methods which is based on transfor-
mation of the original system to a new one. In the case of the conjugate gradient method,
the residual is transformed with the help of an auxiliary system of equations which should
be easily solvable. There are several types of preconditioners such as incomplete factor-
ization but unfortunately no preconditioner is universal. More details about the itera-
tive methods and preconditioning can be found in references (Golub & Van Loan, 1996;
Greenbaum, 1997; Saad, 2003).

The most efficient algorithms for solution of large systems of equations are based on
the combination of direct and iterative methods. Typical example of such algorithms
are domain decomposition methods (Kruis, 2006; Toselli & Widlund, 2005; Magoules,
2006). They are efficient because they can be executed on parallel computers.

This contribution deals with a preconditioning of the conjugate gradient method based
on a smoothed aggregation algorithm. The unknowns of the system solved are split
in nonoverlapping aggregates and the characteristic functions of aggregates, which are
piecewise constant, are defined. Then, the characteristic functions are smoothed and this
step results in overlapping aggregates. Tentative and final prolongators are constructed
and they are used for definition of local and coarse matrices as well as correction opera-
tors. The algorithm starts with a vector which is spread to aggregates and correction step
is performed on each aggregate. Then, one coarse level correction is computed and local
corrections on aggregates are performed in reverse ordering. After such algorithm, new
approximation of the solution is obtained. The algorithm mentioned above is used for
computation of new residual in the conjugate gradient method.

2 BOSS Algorithm

The BOSS algorithm is based on aggregation technique and it was introduced by Brez-
ina in reference (Brezina, 1997). Aggregation methods were introduced in thirties of the
twentieth century and they were devoted for computations in economics (Leontief, 1951).
Later on, the aggregation methods were used for solution of diffusion equation in con-
nection with nuclear engineering. The aggregation served as a special homogenization
method. E. Fermi dealt with the aggregates in 1936 and later references (Erlich, 1954)
and (Young, 1954) occurred. At this time, the aggregation methods are successfully used
even in IT.

A scalar differential equation is used in order to demonstrate basic features of the
BOSS method. The choice is motivated by the fact, that discretization of the differential
equation by the finite element method result in one unknown at each node. Therefore,
there is one-to-one mapping between unknowns and nodes. Aggregation of nodes is iden-
tical with aggregation of unknowns. In the case of vector differential equation, each node
contains several unknowns and appropriate mapping among nodes and unknowns has to
be taken into account. Aggregation of nodes differs from aggregation of unknowns.

First step of the BOSS method collects unknowns into nonoverlapping aggregates.

474

It creates a disjunct covering of the domain solved. The characteristic functions of ag-
gregates are piecewise constant functions which are equal to one for interior unknowns
(unknowns inside of an aggregate) and zero for exterior unknowns (unknowns outside of
an aggregate).

Second step is based on a smoothing procedure which is applied to the characteristic
functions. It means that jumps on aggregate boundaries from function value 1 to value
0 are exchanged by a smooth function. The smoothing procedure enlarges aggregates
because at least the closest neighbour unknowns are attached to the aggregates. The orig-
inally nonoverlapping covering is replaced by an overlapping one. The width of overlap
can be defined by the smoothing procedure. The wider overlap, the better information
exchange among aggregates but also greater memory requirements.

In connection with the finite element method, an aggregate is a set of mesh nodes. Let
m denote the number of aggregates. The index set Ai contains indices of nodes collected
in the i-th aggregate. The disjunct covering means that

Ai ∩ Aj = ∅ for i 6= j . (1)

Simultaneously, the following relation is valid

∪m
i=1Ai = {1, 2, . . . , nu} , (2)

where nu denotes the number of all nodes in the mesh.
Tentative prolongator is described by a matrix P̂ ∈ Rn×m and it is a mapping from

space Rm to space Rn, where n denotes the number of all unknowns. It is a mapping from
the space of aggregates to space of all unknowns. Let the i-th column of the matrix P̂ be
denoted p̂i. It is a vector with n components, where only components with indices from
the set Ai are equal to one, all remaining components are equal to zero.

Let %̂ denote an upper bound of the spectral radius of the matrix A (denoted %(A)) and
let

%(A) ≤ %̂ ≤ C%%(A) (3)

be valid. The estimate (3) can be obtained with the help of Gershgorin theorem. The
degree of smoothing is denoted by dS and the length of recursion is defined

K = blog3(dS + 1)c − 1 , (4)

where b.c is the truncation to the nearest smaller integer.
For j > 0 is new variable defined %̂j = %̂

9j and new matrices are computed

A0 = A (5)

Aj = (I − 4

3
%̂ −1

j−1Aj−1)
2Aj−1 for j = 0, . . . , K . (6)

Finally, the prolongator smoother has the form

S =
K∏

j=0

(I − 4

3
%̂ −1

j Aj) . (7)

475

Such approach cannot be used for implementation because there is huge fill-in during
matrix multiplication which lead to extremely large memory requirements. It is important
to emphasize that the matrix S is a polynomial of the matrix A. Construction of such
a polynomial also cannot be used due to highly oscillating coefficients which result in
numerical instability. The polynomial can be assembled only for very low degrees.

With respect to better behaviour, a smooth prolongator is computed from the tentative
one. The final prolongator is denoted by P and it is equal to

P = SP̂ . (8)

Difficulties with evaluation of the matrix S can be avoided if the matrix-matrix multi-
plication SP̂ is computed consequently. The sparsity of both matrices must be taken
into account otherwise the implementation is very inefficient. Computational complexity
O(deg(S)n) can be achieved if the sparsity is employed properly.

The final prolongator P defines new index sets denoted Ni. They are defined by the
relationship

Ni = {j : Pji 6= 0} . (9)

There are m index sets Ni. They describe covering with overlap and therefore the rela-
tionship

Ni ∩Nj = ∅ for i 6= j (10)

is not valid. The number of components of index set Ni is denoted ni.
In the following text, the global vector denotes a vector from the space Rn, i.e. a

vector with n components. The global vector contains all components of the problem
solved. The local vector denotes a vector from the space Rni , i.e. the vector contains only
components connected to the i-th aggregate. Mapping between a global and local vectors
can be defined with the help of index sets Ni. Let the global vector be denoted g and the
local vector associated with the i-th aggregate be denoted li. There exist the matrix N i

which can be used for transformation in the form

g = N ili . (11)

The transposed matrix NT
i selects components connected to the i-th aggregate from the

global vector g

li = NT
i g . (12)

The local matrix of the i-th aggregate is defined with the help of the matrices N i in
the form

Ãi = NT
i AN i . (13)

The local correction operator is defined by the relationship

Ri = N i(Ãi)
−1NT

i . (14)

476

The inverse matrix (Ãi)
−1 is of course not computed. A suitable factorization to the form

LLT , LDLT or LU is performed.
Except of the local correction operators, there is also coarse correction operator

R0 = P (Ã0)
−1P T , (15)

where the matrix P represents the final prolongator and the matrix Ã0 is defined by the
form

Ã0 = P T AP . (16)

Similarly, the inverse matrix (Ã0)
−1 is not computed because LLT , LDLT or LU fac-

torization can substitute it.
Let system of algebraic equations be in the form

Ax = b . (17)

The BOSS method for the solution of system (17) is summarized in Table 1.

Tab. 1: The BOSS method.

1. initial vector z0 = x(k)

2. local corrections on aggregates
for i from 1 to m: zi = zi−1 + Ri(b−Azi−1)

3. coarse correction
vm = zm + R0(b−Azm)

4. local corrections on aggregates - in reverse ordering
for i from m− 1 to 0: vi = vi+1 + Ri+1(b−Avi+1)

5. resulting vector x(k+1) = v0

3 Preconditioned conjugate gradient method

The number of iterations in iterative methods can be reduced by application of a precon-
ditioner. Let the system of equations has the form

Ax = b , (18)

where the matrix A represents e.g. a stiffness matrix and the vector b represents the right
hand side, e.g. a vector of prescribed forces. The preconditioning transforms the original
system (18) to a new one

BADy = Bb , (19)

477

where the substitution

x = Dy (20)

is used and the equation is multiplied by a matrix B. If the original matrix A is symmetric,
the matrices B and D should satisfy B = DT in order to preserve symmetry. The ideal
preconditioner has the form B = D = A− 1

2 because it results in a system with unit
matrix and the solution is equal to the vector on the right hand side. But this choice is
nearly always unattainable.

In the case of symmetric positive definite matrix, the system can be solved by the
conjugate gradient method. Matrix multiplication on the left hand side in Equation (19)
is not performed. It is substituted by a new matrix C. The preconditioned conjugate
gradient method is summarized in Table 2.

Tab. 2: Preconditioned conjugate gradient method.

initial approximation x(0)

initial residuum r(0) = b−Ax(0)

h(0) = C−1r(0)

s(0) = h(0)

iteration k = 0, 1, ...

α̃(k) =
(r(k))T h(k)

(s(k))T As(k)

r(k+1) = r(k) − α̃(k)As(k)

x(k+1) = x(k) + α̃(k)s(k)

h(k+1) = C−1r(k+1)

β̃(k) =
(r(k+1))T h(k+1)

(r(k))T h(k)

s(k+1) = h(k+1) + β̃(k)s(k)

Preconditioning of the method is described by the step in the form

h(k+1) = C−1r(k+1) , (21)

where r(k+1) denotes the residual and it is recalculated to a new vector h(k+1). If the
matrix C is equal to the matrix A, the conjugate gradient method finds the solution after

478

Fig. 1: Example of aggregates on a square domain.

one iteration. Computation of the inverse matrix to the matrix A is much more demanding
task than solution of system of equations (18), therefore such choice is never used. The
aim is to construct the matrix C as the best approximation of the matrix A.

The aim of this contribution is to construct the matrix C which is very close to the
matrix A by the BOSS method. Equation (21) can be rewritten to the form

Ch(k+1) = r(k+1) , (22)

which is directly suitable for application of the BOSS method. The matrix C is substituted
by the matrix A and the system of equations (22) is solved approximately by the BOSS.
The vectors b and x defined in the BOSS method are substituted by the vectors r(k+1) and
h(k+1) used in the conjugate gradient method.

4 Numerical examples

Numerical examples deal with a plane stress problem and a plate problem described by
the Mindlin-Reissner theory. The problems are selected intentionally in order to show
advantages as well as disadvantages of the proposed algorithm. The plane stress problem
is relatively well-conditioned and the conjugate gradient method solves it efficiently even
without any preconditioner. On the other hand, the plate problems are ill-conditioned and
the BOSS preconditioner reduces elapsed time. All examples are solved on a square do-
main and linear elastic material model is assumed. All time informations are in seconds.
Figure 1 depicts an example of aggregates generated on a domain. All numerical exam-
ples are computed by an implementation which is not optimised yet. Not all operations
performed in the code use fully sparsity of the matrices and vectors. Despite it, important
features of the BOSS method can be seen.

479

Tab. 3: The number of iterations and elapsed times for plane stress problems.

NA NI CG [s] TOT [s] NI CG [s] TOT [s]
NP 967 6 7 967 6 7
10 9 5 6 5 6 9
20 10 5 6 5 6 9
30 10 6 7 5 7 10
NP 1924 40 2 1924 40 2
20 15 24 34 8 24 47
30 16 27 37 8 24 49
NP 2880 110 113 2880 110 113
10 17 60 130 10 55 178
20 19 67 111 10 68 165
30 21 79 121 11 78 167

4.1 Plane stress

Table 3 summarizes the behaviour of the conjugate gradient method with the BOSS pre-
conditioner. NA denotes the number of aggregates, NI denotes the number of iterations,
CG denotes the time spent in computer subroutine dealing with the conjugate gradient
method and TOT denotes the total time of computation. Difference between CG and TOT
is a time devoted to reading input files, writing results to output files, the stiffness matrix
assembling and computation of auxiliary matrices and arrays for the BOSS method. NP
denotes the conjugate gradient method without preconditioner and LDL denotes time of
LDLT factorization. Left part of the table describes results for the degree of smoothing
dS = 2 while the right part describes results for dS = 3. Three meshes with 100x100,
200x200 and 300x300 finite elements are used. The results for particular mesh can be
found in the upper, middle or lower part of Table 3.

4.2 Plate problem

A plate problem described by the Mindlin-Reissner theory is studied. Three meshes with
100x100, 200x200 and 300x300 finite elements are used. The structure of Table 4 is
identical with the structure of Table 3. The results for particular mesh can be found in the
upper, middle or lower part of Table 4.

5 Conclusion

The numerical examples show clearly that the BOSS method is very efficient precondi-
tioner for the conjugate gradient method for very ill-conditioned problems. It is caused
by the local aggregate matrices and local correction operators as well as the global cor-

480

Tab. 4: The number of iterations and elapsed times for plate problems.

NA NI CG [s] TOT [s] NI CG [s] TOT [s]
LDL - - 3 - - 3
NP 12875 25 26 12875 25 26
10 56 7 8 13 11 23
20 67 7 9 14 12 25
30 67 7 9 14 12 25

LDL - - 168 - - 168
NP 21044 185 189 21044 185 189
20 83 147 175 38 37 61
30 63 149 173 42 41 70
NP 42908 870 876 42908 870 876
10 177 226 291 59 117 217
20 226 324 366 68 159 229
30 266 453 495 76 196 266

rection operator. Assembling of the matrices and correction operators takes some time
which is worthwhile in the case of ill-conditioned problems. If the condition number is
not so large, this type of preconditioning is not efficient.

Acknowledgement
Financial support for this work was provided by project number 103/07/1455 of Czech
Science Foundation. The financial support is gratefully acknowledged.

References
Brezina, M. (1997) Robust Iterative Methods on Unstructured Meshes. Ph.D. Thesis,
University of Colorado at Denver.

Duff, I.S.,Erisman, A.M. & Reid, J.K. (2003) Direct Methods for Sparse Matrices. Oxford
Science Publications, Clarendon Press Oxford.

Erlich, R. & Hurwitz, H. (1954) Multigroup Methods for Neutron Diffusion Problems.
Nucleonics, vol. 12, n. 2, pp. 1-23.

Golub, G.H. & Van Loan, C.F. (1996) Matrix Computations. The Johns Hopkins Univer-
sity Press, Third edition, Baltimore, USA.

Greenbaum, A. (1997) Iterative Methods for Solving Linear Systems. Frontiers in Ap-
plied Mathematics, SIAM, Philadelphia, USA.

Kruis, J. (2006) Domain Decomposition Methods for Distributed Computing. Saxe-
Coburg Publications, Kippen, Stirling, Scotland, UK.

481

Leontief, W. (1951) The Structure of the American Economy 1919-1939. Oxford Univer-
sity Press, New York.

Magoules, F. (2007) Mesh Partitioning Techniques and Domain Decomposition Methods.
Saxe-Coburg Publications, Kippen, Stirling, Scotland, UK.

Meurant, G. (1999) Computer Solution of Large Linear Systems. Studies in Mathematics
and its Applications, 28, North-Holland, Elsevier, Amsterdam, The Netherlands.

Saad, Y. (2003) Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, USA.

Toselli, A. & Widlund, O. (2005) Domain Decomposition Methods - Algorithms and
Theory. Springer Series in Computational Mathematics, vol. 34, Springer-Verlag, Berlin,
Germany.

Young, D.M. (1954) Iterative Method for Solving Partial Differential Equations of Elliptic
Type. Trans. Amer. Math. Soc., 43, pp. 92-111.

482

