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Summary: Dynamic analysis of machine aggregate drive with self-locking 
mechanism is presented. The drive system with self-locking mechanism as a 
closed system with possibility of clearance adjustment in the gearing mechanism 
is considered. Two operating regimes of the drive are analyzed – traction regime 
and unbraking regime.  

1. Introduction 

To apply the self-locking mechanisms (e.g. worm gearing) in drive systems requires to take in 
advance the appropriate measure to adjust the clearance. In this way the necessity of the 
presence of brakes in these systems is eliminated and the output members for steady-state 
motion of the system (regime of traction or unbraking regime) have to be driving members 
(Mudrik, 2007). 

The same special phenomenon of transient processes in machine aggregates build up from 
self-locking mechanism of worm gearing with adjustment of lateral gearing clearance are 
analyzed in this paper. The self-locking of worm gearing and linearized dynamical moment 
characteristics of electric drive are considered. 

2. Formulation of the problem  

We consider the drive system with self-locking mechanism as a closed system with possibility 
of clearance adjustment in the gearing mechanism (Fig. 1).  

The worms (members 1, 2) are kinematically coupled by bevel gearing 4 and together with 
the worm gear 3 they complete the worm gearing. This drive system is a closed kinematic 
chain. Force lock-up is created by spring 5 acting on axially movable (on shaft �) worm 2 by 
which the lateral gearing clearance is adjusted. Then axial force of spring acts on worm gear 3 
and creates the so called pre-stress moment Mp. Force effect is located only in self-locking 
mechanism. The worm 1 is mounted on shaft � and is axially fixed against movement. For 
simplicity the transfer ratio of value 1=i  is considered. 
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1 - driving worm, 

2 - adjusting worm, 

3 - worm gear, 

4 - bevel gearing, 

5 - pre-stressed spring, 

Id - inertia moment of rotor of drive system, 

I1, I2, I3 - inertia moments of drive system 
members 

Fig. 1  Kinematic scheme of drive system with self-locking mechanism. 

3. Operating regimes  

Two operating regimes of the drive are analyzed. The following terms and descriptions will 
be used (Mudrik, 2007): 

� Regime A - defined by inequality - 0<⋅ zp �M , (1) 

• worm gearing 1 → 3 operates in the traction regime, i.e. 0<⋅ zp �M , 

• worm gearing 2 → 3 operates in the regime with brake released, then 
A1 - case defined by inequality - 0<⋅ zz �M , 

A2 - case defined by inequality - 0>⋅ zz �M . 

� Regime B - defined by inequality     0>⋅ zp �M , (2) 

• worm gear 1 → 3 operates in the regime with brake released, i.e. 0>⋅ zp �M , 

• worm gear 2 → 3 operates in the traction regime, then 
B1 - case defined by inequality - 0<⋅ zz �M , 

B2 - case defined by inequality - 0>⋅ zz �M . 

The solution for both cases is realized for linear dynamic characteristics of electric drive in 
the form (Mudrik, 2006) 

 )( dd
d

e M
dt

dM
ω−ωβ=+τ 0 , (3) 

where zd ωω ,  - angular velocity of rotor and driven shaft (shafts I, II), 
 0ω  - angular velocity of idling, 
 dM  - driving moment of electric motor, 
 zM  - loading moment acting on worm gear 3, 

 β  - stiffness modulus of static characteristics. 

I1 

I3 

Id 

Mz, ωz 

I2 

3 

2 

4 

� 
� 

k 

Mp 

1 Md, ωd 

5 

629



 

4. Transient processes in the machine aggregate  

As a drive motor, the separately excited DC motor is used. The dynamic model, static 
moment characteristics and run-up characteristics of this motor are shown on Fig. 2. 

 

a)         

 
 

b)           c)  

 
Fig. 2  Drive with separately excited DC motor. 

a - dynamic model; b - static moment characteristics; c - run-up characteristics  

In the first period, the electromagnetic transient process is performed in condition of standing 
rotor and for arbitrary operating regime is this period described by modified equation in the 
form (Mudrik & Na� & Labašová, 1998) 

 kd
d

e MM
dt

dM
� =+ , (4) 

where 
Σ

Σ=τ
R
L

e  - electromagnetic time constant of transient phenomenon, 

 ΣL  - DC motor armature circuit inductance, 

 ΣR  - DC motor armature circuit resistance, 

 0βω=kM  - critical (maximal) moment corresponding to run-up characteristics, 
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Φ

=ω
k
ur

0  - angular velocity of ideal idling, 

 ur - DC motor armature voltage, 
 Φ - magnetic flux of exciting winding, 

 
Σ

Φ=β
R

k 22
 - stiffness of static characteristics, 

 
n

Np
k p

π
=

2
 - motor constant, 

 pp  - number of pole pairs, 

 N - number of active windings of motor armature, 
 n - number of parallel windings of the coil. 

The solution of equation (4) under zero initial conditions is given by expression 
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e
t

eMM kd 1 . (5) 

Time of the first period of transient process t* can be determined form condition dsd MM = , i.e. 
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k
e MM

M
t ln , (6) 

where dsM  is a moment of motor in stationary equilibrium regime of the drive motion. 

Next, the second period of machine aggregate as a whole can be described by following 
general equations of motion 
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 (7) 

where 31M  - moment acting from worm gear 3 on worm 1, 

 32M  - moment acting from worm gear 3 on worm 2, 

 13M  - moment acting from worm 1 on worm gear 3, 

 23M  - moment acting from worm 2 on worm gear 3, 

 1221 kk MM −=  - moments acting in bevel gear. 
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5. Amplitude-frequency characteristics  

Let us introduce the following expressions 

 21 IIII d ++=Σ  - total reduced inertia moment of motor armature and worms, 

 
z

di
ω
ω

=    - transmission ratio of worm gearing, 

 
dd

zz

M
M

ω
ω

−=η  - efficiency of worm gearing, 

  
zz

dd

M
M

ω
ω

=µ  - brake release coefficient. 

Operating regime A: 

For this operating regime the following expressions must be used (Mudrik, 2007) 
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Then using (8), the system of equations (7) has the form 
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The moment of stationary equilibrium drive motion ( 0=ω dtd d ) is expressed from second 
equation of (9) 

 1111 1 −−−− η±ηµ+η= iMiMM zpAd )(, , (10) 

where sign plus is used for regime A1 and sign minus is used for regime A2. 

Characteristic equation of the system defined by (9) has the form 

 01,
2

, =+λ+λτ AMAMe TT , (11) 

where electromechanical time constant in condition of regime A is expressed by equation 

   )(,
12

3
1 −−

Σ
− η+β= iIIT AM . 

When the transient process is oscillating, the characteristic equation has the form 

  01222 =+λδ+λ AAA TT , (12) 

where 
η
γ+=

η
+βτ=τ=

Σ

−
Σ 11 02

31
, T

iI

I
ITT eAMeA  is drive time constant of regime A. 
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Next, we designate 

 1
0

−
Σβτ= IT e   - basic time constant, 

 
2

3

iI

I

Σ
=γ    - ratio of the worm gearing inertia moments, 

 
η
γ+δ=

τ
=δ 1

4 0
,

e

AM
A

T
 - decay coefficient of regime A,  (13) 

 
βτ

=δ Σ

e

I
40   - basic decay coefficient. 

The roots of characteristic equation (12) are 

  
A

AA

T

j 2

2,1
1 δ−±δ−

=λ , (14) 

where 1−=j  is imaginary unit. 

Operating regime B: 

For regime B, the equations (8) are modified and they have the form 
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Using equations (15), the system of equations (9) has the form 
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where   

  µηµ+η= −−− 111 1 iMiMM zpBd �)(,  (17) 

and sign minus is used for regime B1 and sign plus is used for regime B2. 

The characteristic equation of regime B is analogical to characteristic equation (11)  

  01222 =+λδ+λ BBB TT  

The electromechanical time constant is expressed by 

  )(, µ−β= −
Σ

− 2
3

1 iIIT BM . (18) 

Then γµ−= 10TTB   is a time constant of regime B, (19) 
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 γµ−δ=δ 10B   is a decay coefficient of regime B. (20) 

The roots of characteristic equation of regime B 

  
B

BB

T

j 2

2,1
1 δ−±δ−

=λ . (21) 

Then, the natural angular frequencies for both regimes are obtained in the form 
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0,0 0,5 1,0 1,5
0,0

0,5

1,0

1,5

2,0 1,0

1,0

0,8

0,6

0,50,4

0,2

0,80,60,50,4κ = 0,2

Regime B

Regime A

δ
A
/δ

0

δ
B
/δ

0

γ

 

Fig. 3  Dependence of 0δδ A  and 0δδB  vs. parameter γ. 
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Fig. 4  Dependence of natural frequencies 0TAω  and 0TBω  vs. parameter γ. 

6. Conclusions  

The dependencies of 0δδ A  and 0δδB (ratio of decay coefficient to basic decay coefficient, 
5,00 =δ ) on parameter γ for different values of safety factor sκ  are shown in Fig. 3. The 

safety factor is defined by  

  
red

s ϕ
α=κ , (23) 

where α is a helix angle and redϕ  is reduced angle of friction. 

Decay coefficient depends on the direction of rotation. Generally, BA δ>δ  is held. From this 
assumption, the predisposition to generate of vibration in regime B is higher than in regime A. 
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From equations (13) and (20) representing the decay coefficients, it can be seen that the time 
electromagnetic coefficient τe of transient processes in machine aggregate affects vibration of 
the system. The time electromechanical coefficient Tm has the stabilizing effect, i.e. it is a 
damping factor of vibrating system. The growth of parameter γ causes, that the damping effect 
is constant for regime A. The damping effect for operating regime B is decreasing. 

The analyzed mechanism of this drive is dynamic self-locking for condition 1>γµ  (Mudrik 
& Rie�i�iarová, 2007). The reversibility is ensured when the condition of 1<γµ , is satisfied. 
The ranges of drive reversibility are characterized by solid lines in Fig. 3. 

The parameter values of γ (for which the existence of regimes A and B are possible) are 
determined by regime B when the safety factor 5,0≤κ s  and for parameters 

  5,0>κ s ;    0,1<δ A , 

are determined for conditions defined by regime A. 

The dependencies of non-dimensional natural angular frequencies of both regimes ( 0TAω , 

0TBω )  on parameter γ and for parameter 5,00 =δ  are shown on Fig. 4. The natural 
frequency depends on the direction of rotation whereby the inequality 

  AB ω≥ω , 

is held. 

The growing parameter γ causes the growth of the natural frequency Bω  and for  

  
µ

→γ 1
   we have  ∞→ωB   and  0=ωA . 

The values of parameter γ, for which 0=ωA , are the limiting values defining the change of 
vibrating processes on the aperiodic processes. The solid lines in Fig. 4 represent reversibility 
drive. The aperiodic processes in machine aggregate are identified by dashed lines in Fig. 3 
and Fig. 4  
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