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Summary: The paper summarizes recent efforts in the homogeniza-
tion based multiscale modelling of biological tissues in the context
of the fluid-structure interaction at the microscopic level. Two models
are presented: a model of compact bone poroelasticity and a model of
parallel flows in perfused deforming tissue. The homogenization ap-
proach employed to develop these models is based on the Biot model
of fluid saturated porous media, assumptions of periodic geometry of
the pores and uses scale dependent permeability in the double-porous
compartments.

1. Introduction

Biological tissues are multiphase media which, in general, are constituted by solid skeleton
and interstitial fluids. This rough modelling scheme applies for both hard and soft tissues,
although in many biomechanical studies the tissue is considered just as a (visco)elastic solid –
such an approximation is relevant if the task is to provide a stress-strain analysis as a response
to short-period events, dynamic loading in crash tests, or static analyses, when the complex
interactions and the multi-physic character of processes in living tissues can be neglected. Now-
days, however, the biomechanical and biomedical research is more focused on the tissue growth,
remodelling and biochemical processes which are closely related to the biological fluid transport
and mechanical fluctuations of stresses and strains at the cellular level. In the paper we present
some biomechanical models which all are developed using homogenization of fluid saturated
porous solid, where the flow is described by the Darcy law. The so-called strong heterogeneities
(discontinuities) in the hydraulic permeability, K, are considered, so that in some parts of the
microstructure which corresponds to the dual porosity,K depends on ε2, where ε is the length of
the heterogeneity period. The strong heterogeneity results in a new quality of the macroscopic
constitutive laws in comparison with those defined at the microscopic level.

The aim of the paper is to report recent investigations concerning homogenization of the Biot
model of the fluid saturated porous media (FSPM). Using the “ε-square scaling” of the perme-
ability coefficients we account for the dual porosity of the medium matrix. Two topological
types of the microstructure are considered:

• one connected channel system – model of compact bone poroelastic properties; this
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present a quite new result, details on the model development will be published in a forth-
coming paper. A similar model with different topology of the microstructure (dual-porous
inclusions in a porous matrix) was treated in Griso & Rohan (2007).

• two (or more) disjoint channel systems – model of deforming perfused tissue, where the
channel systems reflect the arterial and venous sectors; these are mutually separated each
other by the dual porous matrix representing the tissue penetrated by a very fine network
of arterioles and capillaries. This topic was discussed e.g. in Rohan et al. (2007),
a similar topology of the strongly heterogeneous medium was treated in Showalter &
Visarraga (2004) in a much simpler application to parallel heat diffusion.

In Sections 2. and 3. we explain the structure of the homogenized models, i.e. the local
problems for the so-called corrector functions and the global problems which allow to compute
the macroscopic state (displacement and pressure fields). While the local problems resemble
structure of the “original micromodel” represented by the Biot model, the “upscaled” (global)
models involving the homogenized coefficients are different in their structure, exhibiting the
fading memory effects.

Models of heterogeneous material are expressed in terms of quantities depending on the
(global) “macro”- and (local) “micro”-scale coordinates x and y, respectively; they are related
each other by relation x = εy, as customary, see e.g. Hornung (1997); Cioranescu & Donato
(1999) for the general setting of the homogenization technique and Cioranescu et al. (2002)

for basics of the periodic unfolding technique employed also to develop the models reported in
this paper.

2. Poroelastic properties of compact bone

We consider heterogeneities at the following levels:

1. Compact bone level formed by the osteons. The upscaled model is relevant to the “macro-
scopic” parts of the compact bone considered as a homogeneous medium, but it inherits
structural (thereby the mechanical) properties of the underlying levels.

2. At the osteon level (of the scale ε) we consider distinguishable heterogeneities, as repre-
sented by the Haversian and Volkmann channels embedded in the “matrix”.

3. The matrix contains canaliculi, another (dual) porous structure which is not distinguish-
able in the sense of subdomains of positive volume measures. Canaliculi are drained in
the channels of the “upper” porosity level. In Fig. 1, the dual porous structure of the
osteon is displayed schematically, where the second scale εδ is apparent

The details on homogenization of the heterogeneous periodic structure specified above will
be given in a forthcoming publication. Here we shall present just the limit model obtained by
asymptotic analysis of the following problem. We define the representative periodic cell (RPC)
Y = Π3

i=1]0, ȳi[, R 3 ȳi > 0 which generates the periodic structure of the characteristic size
ε. Let Yc be a (connected) subdomain of Y with Lipschitz boundary representing the Haverse–
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Figure 1: Dual porous structure of the osteon (cylinder) whose diameter is ≈ ε. Haverse canal
in pink (left) and an idealized structure of canalicular porosity (right) with its characteristic
scale ≈ εδ

Volkmann channels, see Fig. (2),

Ym = Y \ Yc ,

∂mYc = ∂cYm = Yc ∩ Ym ,

∂Yc ∩ ∂Y 6= ∅ ,
(1)

where Ym is the matrix compartment. While in Yc the permeability (related to the Darcy flow)
is independent of the scale, ε, in Ym due to the dual porosity Kε

ij(y) ≈ ε2, y ∈ Ym.

Ym

Yc

Figure 2: Microstructure of the compact bone: Left: Haverse–Volkmann system of intercon-
nected channels (dark pink ) and the matrix (light pink). Right: the RPC, Y , generating the
periodic structure; decomposition (1) of Y .

The diffusion-deformation problem with finite scale heterogeneities reads as: for a.a. t ∈
]0, T [ find uε(t) ∈ V and pε(t) ∈ H1(Ω) such that in the sense of time distributions∫

Ω

Dε
ijklekl(uε)eij(v)−

∫
Ω

pε αε
ijeij(v) =

∫
Ω

f · v , ∀v ∈ V0 ,∫
Ω

q αε
ijeij(

d

d t
uε) +

∫
Ω

Kε
ij∂jp

ε ∂iq +

∫
Ω

1

µε

d

d t
pε q = 0 , ∀q ∈ H1(Ω) ,

(2)
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where u(0, x) = 0 and p(0, x) = 0 for a.a. x ∈ Ω. (We require ū(0, ·) = 0 on ∂Ω.) Above the
sets of admissible displacements are employed:

V = {v ∈ H1(Ω) | v = ū(t, ·) on ∂Ω, t ∈]0, T [} ,
V0 = {v ∈ H1(Ω) | v = 0 on ∂Ω} .

(3)

In (2), Dε
ijkl is the elastic tensor, αε

ij are the Biot coefficients and µε is the Biot modulus.

2.1. Microscopic local problems for the corrector basis functions

In the sequel, to simplify the notation, the following bilinear forms are used

aY (u, v) =∼
∫

Y

Dijkl(y)e
y
kl(u) ey

ij(v) ,

bY (ϕ, v) =∼
∫

Y

ϕαij(y)e
y
ij(v) ,

bYm (ϕ, v) =∼
∫

Ym

ϕαm
ij (y)e

y
ij(v) ,

cYm (ϕ, ψ) =∼
∫

Ym

Km
ij (y)∂y

jϕ∂
y
i ψ ,

dYm (ϕ, ψ) =∼
∫

Ym

(µm)−1ψ ϕ .

(4)

Further one introduces Πrs = (Πrs
i ), where Πrs

i = ysδir. The following spaces are employed:
H1

#(Y ) denotes the restriction of the Sobolev space H1(Y ) to the Y-periodic vectorial functions,
whereby analogous notation H1

#(Y ) is used for scalar functions; for Z ⊂ Y , H1
#0(Z) is the

restriction of H1
#(Z) to functions which are zero on ∂Z \ ∂Y (i.e. periodic on ∂Y ∩ ∂Z).

The limit homogenized model derived from (2) involves macroscopic displacements, u and
pressure, p, which is associated with (macroscopic) flow in the Haverse-Volkmann porosity.
The macroscopic model involves homogenized parameters which depend on characteristic re-
sponse of the microstructure reflecting essentially the phenomenon of coupled deformation and
microflow. These characteristic responses are expressed in terms of the corrector basis func-
tions.

Steady problem for strain-associated correctors. Couple (ω̄rs, π̄rs) ∈ H1
#(Y )×H1

#0(Ym)
is the solution of

aY (ω̄rs, v) = −aY (Πrs, v) ∀v ∈ H1
#(Y ) ,

cYm (π̄rs, q) = −bYm (q, ω̄rs + Πrs) ∀q ∈ H1
#0(Ym) .

(5)

Steady problem for pressure-associated correctors. Couple (ω∗,P , π̃P (0+)) ∈ H1
#(Y ) ×

H1
#0(Ym) is the solution of

aY

(
ω∗,P , v

)
− bYm

(
π̃P (0+), v

)
= bY (1, v) ∀v ∈ H1

#(Y ) ,

bYm

(
q, ω∗,P )

+ dYm

(
π̃P (0+), q

)
= −dYm (1, q) ∀q ∈ H1

#0(Ym) .
(6)
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Generic evolutionary problem for correctors. We define couple (ω̃(t), π̃(t)) ∈ H1
#(Y ) ×

H1
#0(Ym) as the solution of the following evolutionary system

aY (ω̃, v)− bYm

(
d

d t
π̃, v

)
= 0 ∀v ∈ H1

#(Y ) ,

bYm (q, ω) + cYm (π̃, q) + dYm

(
d

d t
π̃, q

)
= 0 ∀q ∈ H1

#0(Ym) ,

(7)

where π̃(0) is defined according to the following types of corrector functions:

◦ strain-associated correctors (ω̃rs, π̃rs) solving (7) for ω̃rs ≡ ω̃, π̃rs ≡ π̃, π̃rs(0) := −π̄rs;

◦ pressure-associated correctors (ω̃α, π̃α) solving (7) for ω̃α ≡ ω̃, π̃α ≡ π̃, π̃α(0) obtained
by (6).

Effective permeability Cij relevant to the macroscopic scale is computed using corrector ba-
sis functions ηk ∈ H1

#(Y )/R, k = 1, 2, 3 which satisfy the following autonomous auxiliary
problem imposed in channels Yc:

∼
∫

Yc

Kc
ij∂

y
j (ηk + yk) ∂

y
i ψ = 0 ∀ψ ∈ H1

#(Y ) . (8)

Using correctors ηk the homogenized permeability associated with the Darcy flow in the chan-
nels is computed:

Ckl =∼
∫

Yc

Kc
ij∂

y
j (ηl + yl) ∂

y
i (ηk + yk) . (9)

2.2. Macroscopic model, homogenized coefficients

The macroscopic (homogenized) model involves the following homogenized material parame-
ters which are evaluated using the characteristic responses obtained on solving (5)-(7)

• the homogenized elastic tensor

Eijkl = aY

(
Πkl + ω̄kl, Πij + ω̄ij

)
, (10)

• the homogenized viscosity tensor of the fading memory

Hijkl(t) = cYm

(
d

d t
π̃kl, π̄ij

)
, (11)

• the “elastic” homogenized Biot coefficients

Bij =∼
∫

Y

αij + bY
(
1, ω̄ij

)
, (12)
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• the “fading memory” homogenized Biot coefficients

Fij(t) = bY
(
1, ω̃ij(t)

)
+ dYm

(
d

d t
π̃ij, 1

)
, (13)

• the homogenized reciprocal Biot modulus (instantaneous response)

M =∼
∫

Y

1

µ
+ dYm

(
π̃P , 1

)
+ bY

(
1, ω∗,P )

, (14)

• the fading memory effect of the homogenized reciprocal Biot modulus

G = dYm

(
d

d t
π̃P , 1

)
+ bY

(
1, ω̃P

)
. (15)

Macroscopic problem — coupled diffusion-deformation in the compact bone. For a.a. t ∈
]0, T [ find u ∈ V and p ∈ H1(Ω) with p(0) = 0 (we assumed unloaded stress-free initial
structure) such that∫

Ω

Eijklekl(u)eij(v) +

∫
Ω

∫ t

0

Hijkl(t− τ)ekl(
d

d τ
u(τ)) dτ eij(v)

−
∫

Ω

(Bij + Fij(0+)) p eij(v)−
∫

Ω

∫ t

0

Fij(t− τ)p(τ) dτ eij(v) =

∫
Ω

f · v ,

∫
Ω

Bijeij(u) q +

∫
Ω

Fij(0+)eij(
d

d t
u) q +

∫
Ω

∫ t

0

d

d t
Fij(t− τ)eij(

d

d τ
u(τ)) dτ q

+

∫
Ω

Cij∂jp∂iq +

∫
Ω

(
M d

d t
p+ G(0+)p

)
q +

∫
Ω

∫ t

0

G(t− τ)p(τ) dτ q = 0 ,

(16)

for all v ∈ V0 and q ∈ H1(Ω).
It is worth noting that:

• Apparent viscoelastic behaviour inherited from the microflow effects is invoked in all
homogenized forms of the original Biot model coefficients.

• System (16) is symmetric (due to the Biot coefficients).

• The effective Biot moduli are associated not only to d
d t
p, but also to the instantaneous

pressure, p, and to the fading memory effects.

3. Perfusion of deforming tissue

In this section we report a model similar to that of the bone tissue introduced in Section 2..
Now we consider two systems of channels separated by the matrix interface. Such a model is
applicable to describe the diffusion-deformation phenomena related to the blood perfusion in
deforming tissue.
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Figure 3: Left: the reference microstructural cell split in 2 high conductive sectors Y1 and Y2

separated by interface (matrix) sector Y3; Γk = Yk ∩ Y3, k = 1, 2. Right: the periodic lattice
structure of domain Ω.

We assume the medium is generated as the periodic lattice by the reference microstructural
cell Y which is split into three non-overlapping sectors Yk, k = 1, 2, 3, so that Y = Y1 ∪ Y2 ∪ Y3

with interfaces Γk = Yk ∩ Y3, see Fig. 3.
In analogy with (2), the following weak formulation is considered for homogenization: for

a.a. t ∈]0, T [ find uε(t) ∈ V and pε(t) ∈ H1(Ω) such that in the sense of time distributions∫
Ω

Dε
ijklekl(uε)eij(v)−

∫
Ω

pε divv =

∫
Ω

f · v , ∀v ∈ V0 ,∫
Ω

q div
d

d t
uε +

∫
Ω

Kε
ij∂jp

ε ∂iq = 0 , ∀q ∈ H1(Ω) ,

(17)

where u(0, x) = 0 and p(0, x) = 0 for a.a. x ∈ Ω. (We require ū(0, ·) = 0 on ∂Ω.)
Above the constitutive parameters vary with position in the microstructure, being Y-periodic.

The matrix sector, Y3, is considered as the dual porosity, i.e. Kε
ij(y) ≈ ε2, y ∈ Y3.

The limit homogenized model derived from (17) involves macroscopic displacements, u and
two pressures, p1, p2, which are associated with (macroscopic) parallel flows in the “arterial”
and “venous” porosities. In analogy with the situation treated in Section 2., the macroscopic
model involves homogenized parameters which depend on corrector basis functions – solutions
of the local problems which are now defined.

The steady state correctors. Couples (ω̄rs, π̄rs) and (ω∗,α, π̃α(0)) are solutions to the fol-
lowing problems (where (ψ, φ)Y3

is the inner product of ψ and φ in L2(Y3)):

◦ Find ω̄rs ∈ H1
#(Y ) and π̄rs ∈ H1

#0(Y3) so that

aY (ω̄rs, v) = −aY (Πrs, v) ∀v ∈ H1
#(Y ) ,

cY3 (π̄rs, ψ) = − (ψ, divyω̄
rs + divyΠ

rs)Y3
∀ψ ∈ H1

#0(Y3) ,
(18)

where Πrs
i = δriys, so that Πrs

i e
x
rs is the displacement induced in Y by locally uniform

(macroscopic) strain ex
rs.

◦ Find ω∗,α ∈ H1
#(Y ) and π̃α

0 (0) ∈ H1
#0(Y3) such that

aY (ω∗,α, v)− (π̃α
0 (0), divyv)Y3

=∼
∫

Γα

v · n[α]dS + (π̃α
1 , divyv)Y3

∀v ∈ H1
#(Y ) ,

(ψ, divyω
∗,α)Y3

= 0 ∀ψ ∈ H1
#0(Y3) ,

(19)
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where πα
1 ∈ H1

#(Y3) is arbitrary satisfying πα
1 = δαβ on Γβ and n[α] is the unit normal

outward to Yα. It holds that ω∗,1 = −ω∗,2 and π̃1(0) = 1− π̃2(0). Note π̃α(0) serving as
the Lagrange multiplier of the incompressibility of ω∗,α in Y3.

The time-variant correctors satisfy the following general form of the evolutionary problem:
Find (ω̃, π̃) ∈ H1

#(Y )×H1
#0(Y3) such that for t > 0

aY (ω̃(t), v)−
(

d

d t
π̃(t), divyv

)
Y3

= 0 ∀v ∈ H1
#(Y ) ,

(ψ, divyω̃(t))Y3
+ cY3 (π̃(t), ψ) = g(ψ) ∀ψ ∈ H1

#0(Y3) ,

(20)

with the initial condition on π̃(0). This generic problem is identified for two types of:

◦ strain-associated correctors (ω̃rs, π̃rs) solving (20) for ω̃rs ≡ ω̃, π̃rs ≡ π̃,
π̃rs(0) := −π̄rs, g(ψ) ≡ 0;

◦ pressure-associated correctors (ω̃α, π̃α
0 ) solving (20) for ω̃α ≡ ω̃, π̃α

0 ≡ π̃,
π̃α

0 (0) := π̃α(0) (obtained by (19)), g(ψ) ≡ −cY3 (πα
1 , ψ). Then we define π̃α(t) =

π̃α
0 (t) + πα

1 for t ≥ 0.

3.1. Homogenized problem

The macroscopic (homogenized) model involves the following homogenized material parame-
ters which are evaluated using the characteristic responses obtained on solving (18)-(20):

• the homogenized elastic tensor

Eijkl = aY

(
Πkl + ω̄kl, Πij + ω̄ij

)
,

• the homogenized viscosity tensor of the fading memory

Hijkl(t) = cY3

(
d

d t
π̃kl(t), π̄ij

)
,

• the homogenized Biot-type coefficients (related to local difference in pressures, p2 − p1)

P̄α
ij =

[
(π̃α(0), δij)Y3

− aY

(
ω∗,α, Πij

)]
,

R̃α
ij(t) =

[(
d

d t
π̃α(t), δij

)
Y3

− aY

(
ω̃α(t), Πij

)]
,

• the homogenized Barenblatt coefficients, related to the flow between the two channels,
induced by pα − pβ , β 6= α. They describe the following two phenomena: net fluid
exchange through rigid-fixed interface (w̃α

i = −K3
ij∂jπ̃

α is the perfusion velocity)

G̃+(t) =∼
∫

Γ1

(
ω̃1(t) + w̃1(t)

)
· n[1]dS , (21)

and effects of the incompressible interface sector, the change of proportion between vol-
umes of the channels Y1 and Y2 due to the compliant, incompressible interface Y3

G∗ =∼
∫

Γα

ω∗,α · n[α]dS .
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• the homogenized permeability Cα
ij of channel α = 1, 2 is computed according to (8)-(9),

where Yc is replaced by Yα.

The macromodel defined in terms of the homogenized coefficients involves macroscopic
displacements, u(t) ∈ V ⊂ H1(Ω), and two macroscopic pressures, p1(t), p2(t) ∈ H1

0 (Ω);
these satisfy the equilibrium equation∫

Ω

[
Eijkle

x
kl(u(t)) +

∫ t

0

Hijkl(t− τ)
d

d τ
ex

kl(u(τ)) dτ

]
ex

ij(v)

−
∫

Ω

ex
ij(v)

∫ t

0

R̃1
ij(t− τ)[p1(τ)− p2(τ)] dτ

−
∑

α=1,2

∫
Ω

[
|Yα|
|Y |

δij + P̄α
ij

]
pα(t) ex

ij(v) = L(v) ∀v ∈ V0 ,

(22)

(where V0 is the space of the test displacements and L(·) is the load functional) and the two
balance-of-mass equations for α, β = 1, 2, β 6= α∫

Ω

Cα
ij ∂

x
j pα(t) ∂x

i q +

∫
Ω

q G∗ d

d t
(pα(t)− pβ(t))

+

∫
Ω

q

∫ t

0

G̃+(t− τ)
d

d τ
(pα(τ)− pβ(τ)) dτ

+

∫
Ω

q

∫ t

0

R̃α
ij(t− τ)

d

d τ
ex

ij(u(τ)) dτ

+

∫
Ω

q

[
|Yα|
|Y |

δij + P̄α
ij

]
d

d t
ex

ij(u(t)) = 0 , ∀q ∈ H1
0 (Ω) ,

(23)

which govern the fluid flows in the two channels and its redistribution between them.

4. Concluding remarks

The research reported here is related to our efforts in multiscale modeling of heterogeneous
materials, namely with applications in tissue biomechanics. The homogenization technique
allows for understanding how the effective material properties (coefficients) depend on interac-
tions in the “microstructure” (i.e. the diffusion flow coupled with deformations in the present
examples). Moreover, the two-scale modeling enables to compute quantities of interest at the
“macroscopic” level and to employ for subsequent recovery of quantities characterizing tis-
sue behaviour at the microscopic scale. In the context of the biomechanical applications, such
option seems to be indispensable for modeling tissue growth and remodeling processes.

These models can be extended for treatment of large deformations, see e.g. Cimrman &
Rohan (2007) for ad hoc parallel flows modeling, or Rohan (2006) for homogenization of the
microflow modeling in soft tissues. Concerning application in blood perfusion, in real tissues
the channel (blood vessel) geometries are characterized by branching, which is not completely
consistent with assumptions of periodicity. Therefore, in Rohan (2008) homogenization of
layered structures was suggested, where the periodicity assumption is relaxed and the model
is well suited to capture the geometrical features the vascular “perfusion tree”. The compact
bone tissue model allows to obtain some microflow figures as the response on the macroscopic
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deformation. This will contribute to development of models which consider coupling of defor-
mation induced flow in lacuno-canalicular porosities with electrochemical processes in living
bone tissue, cf. Lemaire et al. (2008).

Both the homogenized models are implemented in our in-house developed SfePy code, Cim-
rman et al. (2008), which integrates all subroutines form solving the local corrector problems,
evaluation of homogenized coefficients and solving the evolutionary macroscopic problems fea-
tured by occurrence of convolution integrals.

Acknowledgments

The research is supported by the project MSM 4977751303 of the Ministry of Education and
Sports of the Czech Republic. Part of the research was done during the stay of E. Rohan in UMR
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