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Summary: The general growth and remodeling theory of DiCarlo is applied on 

the modeling of piezoelectric effect. This model is verified on the 1D stack 

comparing the numerical results with the published experimental data. The 

further possibility of this model to take in account the change of stiffness is 

outlined. 

1.  Introduction 

The aim of this contribution is to apply the growth and remodelling theory developed e.g. in  

DiCarlo & Quiligotti (2002) and further applied for 1D problems in Rosenberg & Hyncik 

(2007) for the modeling of the piezo-effect. The change of size and form of the piezo-

continuum is very similar to the growth of living tissues for which the relevant growth and 

remodeling theory was developed. In following as an example the behaviour of the 1D 

piezoelectric stack will be analyzed.  

2.  Description of the algorithm 

This theory of growth and remodeling is deeply introduced in above mentioned papers. Here 

we use this results to extend it for piezoelectric continuum. Considering the velocity of 

continuum pv ɺ∇=  ( p is the placement mapping the initial configuration into the current 

configuration) and the velocity of growth 1−= PPV ɺ  (P is the deformation gradient between 

the initial and relaxed configuration) and introducing further the Cauchy stress tensor  τ, the 

generalized external remodeling force C, vector of electric flux density D,  the electric field 

vector E,  the electric field potential Φ, the generalized virtual working can be expressed as 
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where nτ̂  and D.n are prescribed stress and electric flux on boundary and n is the vector of 

outer normal. From the principle of objectivity follows z = 0, τ  is symmetric, see DiCarlo & 

Quiligotti (2002). Applying the Green's theorem and further arranging, from (1) the 

equilibrium and boundary conditions can be obtained in form 

 

0=+ bτDiv      on     
0B  , 

 

0CB =+      on     
0B  , 

 

                                                        nτnτ =ˆ      on     0B∂  ,                                                   (2) 

 

0====divD  on     0B  

 

nDDn ˆ==== on     0B∂  

 The second law of thermodynamics can be written after some procedure described in 

Rosenberg & Hyncik (2007)  in form 
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where ( ) ( ) ( )EKFKFKE,F, ,,, piezoel ψψψ +=  is the free energy density related to the relaxed  

volume decomposed into elastic and piezoelectric part. K represents the parameters, which 

can be changing during the material remodelling and on which the material parameters are 

depending - Kɺ  is the corresponding velocity. We assume here that the stress τ   can be 

decomposed into the elastic part elτ  and the dissipative part disτ . From this inequality we can 

obtain the constitutive equations  
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where sE  is the tensor of the Eshelby's type (further shortly Eshelby tensor),  M ,H and G are 

positively definite matrices.  

2.1.  Example: 1D – piezoelectric continuum  
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Let the free energy density has the form 
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that corresponds to the linear model of piezoelectrical continuum (see e.g. Zemcik et al. 

(2007)). Here lll r ,,0  are the lengths of the stack in initial, relaxed and current configuration 

respectively and κ,,ek the material parameters (k-stiffness, e-piezoelectric coupling 

coefficient, κ -dielectric permittivity). From the first and last equations in (4) we can obtain 

the usuall strain-charge form - see e.g. Zemcik et al. (2007). 
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Further we will assume, that the elements of K are directly the material parameters k,e and κ . 

 Putting from (5) into (4) and using the equilibrium equations we can obtain the equations 

of the following dynamical system describing the behaviour of the piezoelectric stack during 

time: 

a) l is given (“relaxation”) 
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where 
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b)τ  is given (“creep”) 
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where (16) is obtained from  
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 Here 3,2,1;, =imr ii  are the components of R and M and g and h corresponds with G 

and H. They can be in general functions of the variables. 

 We concentrate our attention to the case b) when the external loading is given. The 

remaining equations can be rearanged into the form 

 

                       (((( ))))[[[[ ]]]]eExk
h

x ++++−−−−−−−−==== 1
1
τɺ                                               (18) 

789



 

 

                                    (((( )))) 




 −−−−−−−−==== 2

1

1

1
2

11
xr

m
kɺ                                               (19) 

 

              (((( ))))[[[[ ]]]]1
1

2

2

−−−−++++==== xEr
m

eɺ                                                 (20) 

where 
rl
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2.1.1.  k, e are constant, κ =0 

The most simple case we obtain, when we will assume that all the material parameters are 

constant. Then we can work only with the equations (18) and (21). Equation (18) can be 

solved analytically 
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 Putting this result into (21) we obtain after integration for (((( ))))rr lll ,0∈∈∈∈  
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 The limit values for ∞∞∞∞→→→→t  are 
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under condition 
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 To analyze the stability of this equilibrium point we will write the equations in variation 

for the system (18), (21). After inserting from (24) we obtain  
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where the coefficient by 2ξ  in the second equation is according (25) equel zero. The 

corresponding characteristic equation is 

 

                    0

;0

0;
====

−−−−

−−−−−−−−

λ

λ
h

k

                                             (27) 

 

 The eigenvalues are then 
h

k−−−−======== 21 ,0 λλ . Because 0,0 >>>>>>>> hk  the equilibrium point is 

stable. 

 Now we try to verify the above mentioned theory with the experimental results published 

in Mitrovic & al.(2001). Here we could find the basic material properties of different stacks. 

As an example we have choosen materiál  PZT-5H 
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 Maximum electric field E applied in experiments was 
m

MV38.1  and maximum stressτ  

applied was MPa9.68 . The model (24) corresponds quite good with the published results 

(Mitrovic & al. (2001), p. 4363 Fig. 4). 

 To evaluate  the hysteresis we will assume the following time dependace of E (see Fig. 1): 
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 Putting it into (24) we obtain following result 
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 When we replace t with E using (28), we obtain finally the dependence ε on E: 
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 The graph for 0====τ  is shown on Fig. 2. The hysteresis depends on h  and on the velocity 

T
E

T
E

v 00 2

2

======== . For h=0.0001 we obtain  0001.0
4 0 ====h
kT

eE
what corresponds roughly 

with Fig. 4 in Mitrovic & al. (2001).  
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Fig.1: E-t dependance 

 

 

 

 

Fig. 2: E−−−−ε  dependence corresponding to Fig. .1 for 0====τ . 

 

 For 0≠≠≠≠τ  we need to solve the above given dynamical system numericaly. The result for 

the maximum load MPa55  is shown on the Fig. 3. 
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Fig. 3: E−−−−ε  dependence corresponding to Fig. 1 for MPa55=τ . 

 

2.1.2.  e is constant, κ =0, k is changing:  

Better correspondence must take in account the change of other material parameters during 

loading and application of electrical field according to the experimental results in above 

mentioned publication Mitrovic (2001).  

 Further  will be assumed, that only stiffness k  is changing during the loading process. In 

this case it´s necessary to take into account either the dependance of 1r  on the variables or to 

change the form of ψ  . In the last case we can e.g. add the term 2

2

1
kα into the RHS of (5). 

Then the new form of (19) will be  
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and the new form of (21) is 
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 The new dynamical system is given by (18) and (33).  

 When we put 1−−−−==== xε  then the fix point coordinates (((( ))))00 ,kε  can be obtained solving the 

following system of equations 
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 For 
0ε  we obtain the cubic equation  
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and for 
0k  
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 From (36) is clear, why it´s necessary that 0≠α . For 0====α  we obtain nontrivial solution 

of (36) 10 2r=ε  which is unrealistic. 

 Using this model we can obtain the stiffness increase during the activation described in 

Mitrovic (2001). The stability analysis of this dynamical system under investigation now-a-

day. 

 

3.  Conclusions 

The described model was formulated on both basic situations – loading with isolated ends of 

stack and with given electric field potential. The deeper analysis was done for the second 

case. The necessary condition for C was developed. The results agree with the published 

experimental results. The suggested approach can be generalized to take in account the 

change of the stiffness of the piezoelectric stack according the experimental results.  It allows 

also the simple generalization for nonlinear case and of course for the 3D-continuum. 
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