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Summary: The paper deals with the motion modelling of a material bogie of a 
railway vehicle. The aim of this contribution is the bogie motion analysis with 
consideration of creep force effects. The contact between the wheel sets and the 
railway is solved as a contact of two conical surfaces with two lines. The bogie 
suspension system is modeled by nonlinear suspension elements which are con-
nected to the railway and the vehicle case. The railway and vehicle case is con-
sidered with no degrees of freedom. The comparison of the bogie motion without 
and with secondary suspension in the vehicle case is made. The solution is made 
for motion on the straight railway and constant forward velocity. The mathemati-
cal model of the railway vehicle bogie is created and the numerical solution of 
this mathematical model is made by own developed software which allows to 
simulate a bogie motion in dependence on initial values. 

1. Introduction 

The paper deals with the motion modelling of a material bogie of a railway vehicle. The aim 
of this contribution is the bogie motion analysis with consideration of creep force effects. The 
comparison of the free bogie motion with the bogie motion suspended in the vehicle case is 
made. The solution is made for motion on the straight railway and constant forward velocity. 
The railway bogie is considered as perfectly rigid body which is suspended by immaterial 
suspension elements to the infinitely stiffness railway and vehicle case. The railway and vehi-
cle case is considered with no degrees of freedom. The suspension between the vehicle case 
and the bogie is modeled by spring and damper elements. The bogie linkage with the railway 
is realized by creep elements. The bogie is considered with two degrees of freedom which al-
low the lateral motion and rotation arround the vertical axis. For the free bogie motion on the 
straight railway the link force effects between the bogie and the vehicle case are considered as 
zero. This work is based on the book Garg & Dukkipati (1984) and it follows up with the pa-
pers Švígler & Siegl (2007) and Siegl J. & Švígler J. (2006). The railway vehicle with de-
signed velocity 200 [kmh-1] is considered. The contact between the wheel sets and the railway 
is solved as the contact of two conical surfaces with two lines. The stiffness of rail with the 
subsoil is considered as infinite. The publications Jandora (2007), Moravčík & Zelenka 
(2007) and Byrtus, Zeman, Hlaváč (2007) dealing with the modelling and dynamical analysis 
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of a railway vehicle was studied. 

2. Assupmtions 

Vehicle suspension systems should by accurately modeled by equivalent suspension elements. 
In most cases for passanger and locomotive trucks, suspension characteristics can be repre-
sented by linear suspension elements. On the other hand, for most freight trucks, suspension 
characteristics are quite nonlinear and therefore they are required to be modeled by nonlinear 
elements. In developing the equations of motion for the railway vehicle model, the following 
assumptions are made. The vehicle frame is assumed to be rigid and its stiffness is lumped in 
the suspension elements. The wheel sets are assumed to run freely in the journal bearings 
without bearing friction, all displacements in suspension elements are considered to be small, 
nonlinearities due to suspension stops, wheel–flange contact, dry friction in suspension ele-
ments and adhesion limits between wheel and rail are neglected. The simpified wheel and rail 
contact geometry and linear creep theory is used, the gyroscope moments of wheel sets are 
neglected, there is no wheel lift and the wheels are always in contact with the rails. 

 

Fig. 1: General view on the bogie in default position – coordinate systems. 

3. Used mathematical style 

A generalized coordinate vector of a coordinate system b expressed in a coordinate system a 

has the form 6Ta a T a T
b b b = ∈ q r φ ℝ  where 3,  a a

b b ∈r φ ℝ  is a linear and an angular coordi-
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nate, the 41 ,  0
Ta a T a a T

b b b b   = = ∈   r r φ φ ℝ  is a linear and an angular extended coordi-

nate. The left upper index means generaly a name of a coordinate system in which a given 
magnitude is expressed. A transformation matrix , 4 4a b ×∈T ℝ  determines a coordinate system b 
expressed in a coordinate system a, the 3 3

R
×∈T ℝ  indicates a rotary transformation matrix. 

The work uses right-handed Cartesian coordinate systems whose the first base vectors on all 
figures are marked by black dots at the vertex of a vector conus. 

4. Input parameters 

It is considered a biaxial bogie of an electric locomotive that does not generates neither trac-
tive nor braking force effects. A revolving pin, a part of secondary springs and dampers have 
to be considered as a component of a locomotive case. The weight of these parts is in total 
523 [kg]. The mass inertia moments are expressed to the mass centers always. For simplifica-
tion the generalized coordinate of the bogie mass center from the bogie equilibrium or default 
position ( )0B

B tq  with two degrees of freedom is marked as 

 ( ) [ ]0 0 0 0
T

t y ψ=q . (1) 

Hence the longitudinal motion performs the railway, the vertical, roll and pitch motion of the 
bogie is not considered. The roll, pitch and yaw angles constitute rotation around the i-th base 
vector of the bogie coordinate system B in the equilibrium position 0

RWa
iBe . 

4.1. Wheel–Rail common parameters 

The half of the rail gauge is l = 750 [mm], the half vertex angle of the the cone wheel is 
( )atan 1/ 20λ =  and the coefficient of static dry friction between the rail and the wheel is con-

sidered fRW = 0,4 [–]. 

4.2. Railway 

The bogie motion is assumed on the the first straight railway segment only which is described 
in the fixed coordinate system RW, Fig. 1. This system is placed in the global coordinate sys-

tem G by the coordinate [ ]100 0 300 0 0 0
TG

RW =q . The moveable system RWa is de-

fined by the coordinate [ ]0 0 0 0 0
TRW

RWa RWu=q  where the parameter 0,  RWu L∈  is 

the coordinate on the railway segment, the L is the railway length and uRW = vt where v is for-
ward velocity and t is the time coordinate. This RWa, active coordinate system, actualy de-
fines or draws the railway curve. 

4.2.1. Rail 

The rail has material properties Young’s rigidity modulus at pull ER  = 210 000 [MPa] and 
Poisson’s ratio νR = 0,25 [–], geometrical parameters are the principal normal radiuses of cur-

vatures at the default contact point [ ] [ ]300  
T

R mm= ∞R  where the first radius of curvature 

RR1 is expressed in the longitudinal and the second one RR2 in the lateral direction. The coor-
dinates matrix of the rails R1j at each railway segment is, Fig. 1, 

[ ]( )1 1

0 1 0 1 0 0
0 0 0 0

0 1 0 1 0 0

T

RWa RWa
R R j diag l λ  

 = =    − − 
q q . The j-th rail is conside-
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red as a curve, which is given by following vector function in global coordinate system G 

 ( ) ( ) [ ], , , 1 0 0 0 1
TG G RW RW RWa RWa R j

Rj RW RWu u=r T T T . (2) 

4.3. Parameters of the whole bogie 

The bogie contain two wheel sets which have two degrees of freedom, vertical and roll free-
dom, however these wheelsets are rigidly connected to the bogie in every point of time. The 
whole bogie is therefore considered as a rigid body. The bogie weight is mB = 15 760 [kg], the 
mass inertia tensor in the bogie coordinate system B is 

2

16 062,721 207,752 1,318

207,752 26 375,833 3,474  

1,318 3,474 24 232,248

B
B kgm

− − 
   = − −   
 − − 

I  and the coordinate of the bogie mass cen-

ter in the equilibrium, default position, is [ ] [ ]
0 0 0 727 0 0 0  

TRWa
B mm=q . The coordi-

nates matrix of the i-th wheel set in the equilibrium position in the bogie coordinate system B 

is 0 0

1 250 0 102 0 0 0

1 250 0 102 0 0

T

B B
WS WS i

− 
 = =   − − 

q q
π

, the coordinates matrix of the j-th wheel 

on the i-th wheel set at the i-th wheel set coordinate system WSi is 

0 0 0,5 0 0

0 0   0,5 0

T

WSi WSi
W Wij

l

l

π
π π

− 
 = =    − 

q q . 

4.3.1. Wheel 

The wheel has material properties Young’s rigidity modulus at pull EW  = 210 000 [MPa] and 
Poisson’s ratio νW = 0,25 [–], the geometrical parameters, principal normal radiuses of curva-
tures at the default contact point, are approximatelly considered    

[ ] [ ]1 250 / 2 100 000  
T

W mm=R  where the first radius of curvature RW1 is in the longitudinal 

and the second one RW2 in the lateral direction. The coordinates matrix of the wheels Wij on 
the i-th  wheel set WSi is, Fig. 1, 

0 0 0,5 0 0

0 0   0,5 0

T

WS WSi
W Wij

l

l

π
π π

− 
 = =    − 

q q . The wheel rolling surface is considered as a co-

nical surface, which is described by following vector function in the actual coordinate system 

 ( )

( )
( )

1 1 2

1 1 2
1 2

1

tan cos

tan sin
,  

1

W

W
W

R u u

R u u
u u

u

λ
λ

 − 
 − =
 
 
 

r  (3) 

where u1, u2 are surface parameters. The j-th wheel surface of the i-th wheel set in the global 
coordinate system is given 

( ) ( ) ( ) ( ), , , 0 0, , 0 0 , 0 ,
1 2 1 2,  ,  G G RW RW RWa RWa B B B B WS i WS i WSi WS i WSi Wij Wij

Wij RW WSi Wu u u u u=r T T T T T T q T r , (4) 

tangential vectors at each wheel point 
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t  (5) 

and the normal vector 

 ( )1 2 1 2,  G G G
Wij Wij Wiju u = ×n t t . (6) 

4.3.2. Link elements to the case – secondary suspension 

The whole link elements are considered as immaterial. 

Springs 

There are condsidered four linear spiral springs whose high in free state is 630 [mm], diameter 
is 240 [mm], diameter of the wire is 48 [mm], axial stiffness is 538 [Nmm-1], radial stiffness 
for static load, in accordance with Ponomarev, is 266 [Nmm-1] and number of effective 
threads is 7. The coordinates matrix of the secondary springs coordinate systems SSi is 

( ) { }3

3 3 3 3

1 1 1 1

1 1 1 1
170 1 370 617 ,    ,1,  ...,  4

1 1 1 1S Si

RWa RWa T
S S diag i

− − 
 − −    = = ∈    
 
 

q q 0

0 0 0 0

 

and the matrix of the stiffness vectors is 

[ ]( ) { }
1 1 1 1

266 266 538 1 1 1 1  ,    1,  ...,  4

1 1 1 1

Si Si

S Si

S S
S S

N
diag i

mm

 
   = = ∈      

  

k k . 

Dampers 

The whole dampers of the company KONI are modeled as linear except the longitudinal. The 
damping force *

,DS loF  of this longitudinal damper or yaw damper is given as a discrete func-

tion that is interpolated to the continuous function ,DS loF  by the Piecewise cubic Hermite in-

terpolating Polynomial, Fig. 2. This interpolation method has no overshoots and less oscilla-
tion if the data are not smooth. 
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Fig. 2: Functions of longitudinal damper for secondary suspension – continuous damping for-
ce ( )

, ,DS lo DS loF F x= ɺ , discrete damping force ( )* *
, ,DS lo DS loF F x= ɺ  (white points) and damping 

( )
, , , /DS lo DS lo DS lob b x F x= = ∂ ∂ɺ ɺ  (blue curve). 

The coordinates matrix of secondary dampers actual coordinate systems DSi is 

( )
590 405 400 590 405 400
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and the matrix of damping vectors is 
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where  

 

( ) ( )0, 0 0, 0
0 0 0, 0,

30

0 0, 0

0 1

0

Si Si

Si Si Si

Si

B B B BB B B B
D DB B B B B B B B B R B

D B D D T

B B B B B
B R D B

d

dt

  
= = + = =  

    

 +
=  
  

T r rΩ T r
r q T r T r

0

Ω T r r

ɺ
ɺɺ ɺ ɺ

�����������

ɺ
 (7) 

is the velocity vector expressed in the bogie equilibrium position B0 of the i-th damper and 
the 0B

BΩ  is the bogie angular velocity in the matrix form. 

 

Fig. 3: General view on the bogie in a general position. 

4.4. Case of locomotive 

To the case of vehicle is added mass of the rotary pin and upper part of the secondary suspen-
sion. The case weight is mCASE = 55 526 [kg], the mass inertia tensor is 

1WS

y

ψ

12C

12
12

W
Cr

11
11

W
Cr

01WS

11W

B

0B

2WS

02WS

l

l

G

RW 21C

21
21

W
Cr

22W

21W

RWa

1rail

2rail

0CASE CASE≡

λ

λ
22C

12W

11C

0B
Bφ

11R

12R

837



 

[ ]( ) 2104 772 1 037 305 1 037 091  CASE
CASE diag kgm =  I  and the coordinate of the case mass 

center in the equilibrium position is [ ]0 3200 0 1 713 0 0 0
TRWa

CASE = −q . The case is con-

sidered with no degree of freedom, hence 0 6
CASE

CASE =q 0 . 

5. Analysis 

The bogie suspension system is modeled by nonlinear suspension elements. The bogie is 
modeled as a discrete mechanical system, thus on condition of perfectly rigid bodies which 
are linked by immaterial linkages. 

5.1. Bogie constrains 

The wheel sets, which are rigidly connected to the bogie, are constrained by the rails which 
take away three degrees of freedom. The wheel set pitch freedom is not considered. The i-th 
wheel set coordinate is so 

 0 0 00 0 0 0
TWS i WS i WS i

WSi WSi WSiz φ =  q  . (8) 

The wheel set – rails contact is solved simpli as biconus on two parallel lines. The conditions 
of the i-th wheel set – rails contact are following 

 

1 1 4

1 1

2 2 4

2 2

,

0,

,

0

G G
R Wi

G T G
R Wi

G G
R Wi

G T G
R Wi

− =

=

− =

=

r r 0

t n

r r 0

t n

 (9) 

where G
Rjt  is tangential vector of the j-th rail curve. These eight non-linear equations 

F(x) = 0 solves the unknow vector 

 0 0 8
1 1 1 2 1 2 1 2 2 2

TWS i WS i
RW W W RW W W WSi WSiu u u u u u z φ = ∈ x ℝ . (10) 

The Fig. 3 is generated with application of this contact detection method. 

6. Motion equation 

The condition of the bogie dynamic equilibrium in the bogie coordinate system B is in the 
vector form 

 ( ) ( ) ( ) ( ) ( ) ( ) 6,   B B B B B B
I D S C A R+ + + + + =Q q Q q Q q Q q q Q q Q q 0ɺɺ ɺ ɺ  (11) 

where QI is an inertia force effect of the bogie, QD is a dissipative force effect of damper ele-
ments, QS is a force effect of spring elements, QC is a force effect of creep elements and QA , 
QR is the gravity action and reactive force effect. The coordinate of the i-th linkage element in 
the bogie coordinate system B is 

 ( ) ( ), 0 0 0 , 0
0       RWa RWa B RWa B B B RWa B RWa

i B i i i iinv= ⇒ = =r T q r r r T r . (12) 
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6.1. Inertia force effect 

The inertia force effect is expressed 

 B
I = −Q Mqɺɺ , B

B
B

m 
=  
 

E 0
M

0 I
 (13) 

where 6 6×∈M ℝ  is the mass matrix of the bogie and 3 3×∈E ℝ  is the identity matrix. 

6.2. Damper force effect 

The force effect of the damper elements is expressed 

 ( )B
D = −Q B q qɺ ɺ , ( )

6

1

Si Si Si

Si Si Si Si Si

B B B T
D D D

B B B B B T
i D D D D D=

 
 = =
  

∑
B B R

B B q
R B R B R

ɺ  (14) 

where 6 6×∈B ℝ  is the damping matrix of the bogie, 
Si

B
DR  is the position vector in matrix form 

of the i-th secondary damper in the bogie coordinate system and 3 3

Si

B
D

×∈B ℝ  is the transfor-

mated damping matrix of the i-th secondary damper which is given by 

 ( ) ( ), ,Si Si Si

Si Si Si Si

B D D B DB B T B
D R D D R D=B T φ B T φ  (15) 

where the coordinate system B  is parallel with the coordinate system B. The damping matrix 
has the form ( )Si

Si Si

D
D Ddiag=B b . 

6.3. Spring force effect 

The force effect of the spring elements is expressed 

 B
S = −Q Kq , 

4

1

Si Si Si

Si Si Si Si Si

B B B T
S S S

B B B B B T
i S S S S S=

 
 =
  

∑
K K R

K
R K R K R

 (16) 

where 6 6×∈K ℝ  is the stiffness matrix of the bogie, 
Si

B
SR  is the position vector in matrix form 

of the i-th secondary spring in the bogie coordinate system B and 3 3

Si

B
S

×∈K ℝ  is the transfor-

mated damping matrix of the i-th secondary spring which is given by 

 ( ) ( ), ,Si Si Si

Si Si Si Si

B S S B SB B T B
D R S S R S=K T φ K T φ . (17) 

The i-th spring actual coordinate system SSi lies in the principal central axes of elasticity 
(PCAE). The spring is sometimes called as the elastic insulator. The stiffness matrix has the 
form ( )Si

Si Si

S
S Sdiag=K k . 

6.4. Gravity force effects 

The action force effect on the bogie is caused by the gravitational field only with acceleration 
g and therefore 

 ( )0 0 0,5 0 0 0
TB

A B CASEm m g= − +  Q . (18) 

On the i-th wheel set it affects 
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 ( )0 0 0,5 / 2 0 0 0
TWSi

A B CASEm m g= − +  Q . (19) 

This action force effect causes the reactive force effects at the wheel-rail contacts of the i-th 
wheel set for the static equilibrium. These reactive force effects are given by the condition of 
the static equilibrium 

 
, 2

3 3

6, , 
1

Cij Cij
RWSi Cij

A RWSi Cij Cij Cij Cij
j Ci R R

×

=

   
 + = 
    

∑
T 0

Q Q 0
R T T

 (20) 

where the reactive force at the contact Cij has the form [ ]1 2 3 0 0 0
TCij

R R R RF F F=Q . 

The Eq. 20 is actually a vector linear equation ( ) =F x 0  where F is a vector function, x is a 
vector of solution and 0 is the zero vector. The reactive forces at the contact tangential plane, 
FR1 and FR2, secure the static state, but a motion on this plane is possible. Therefore the third 
reactive force FR3 only is applicated to the motion equation 

 [ ]30 0 0 0 0
TCij

R RF=Q . (21) 

This reactive force effect Cij
RQ  is equivalently replaced in the bogie coordinate system B and 

the result reactive force effect caused by the gravitational field is following 

 
, 2 2

3 3

, , 
1 1

Cij Cij
RB Cij

R RB Cij Cij Cij Cij
i j Cij R R

×

= =

   
 =  
    

∑∑
T 0

Q Q
R T T

 (22) 

where the coordinate system Cij  is parallel with the bogie coordinate system. The force 2
B

RQ  

is sometimes called the lateral gravitational stiffness and the moment 6
B

RQ  the yaw gravitati-

onal stiffness. The force Cij
RF  in the Eq. 21 is called the wheel force. 

6.5. Creep force effects 

The creep force effect at the contact coordinate system Cij of the i-th wheel set and the j-th 
wheel, whose the third base vector is always perpendicular to the contact tangential plane, is 
described by the Kalker’s linear theory of rolling contact, Kalker (1967). In the matrix form it 
is possible to express as 

 ( ) ( ),Cij
C = −Q C q g q qɺ  (23) 

where C is a square antisymetrical matrix of the Kalker’s linear functions and g is the cree-
pages vector of a wheel and a rail. This equation has form 

 

( )

( ) ( )

( )

1

11 1
3

1
2 222 26

2 6
66

0 0 0 0 0

0 0 0
00 0 0 0 0
00 0 0 0
00 0 0

x

y

Cij
C

z

ab GCT

T ab GC ab GC

M
sym ab GC

γ
γ

γ

 
    
    
    
    = = −     
    
    
           − 

Q  (24) 
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where Tx is longitudinal creep force, Ty is lateral creep force and Mz is spin-creep moment. Li-
near creep force Tx is independent of γ2  and γ6, whereas Ty is independent of γ1. This Kalker’s 
theory uses the combined elastic constants ν and G for the case of two different rolling bodies 
where ν is combined Poisson’s ratio and G is combined shear modulus of rigidity of wheel 
and rail. The Kalker’s creep function Cij = Cij(ν, a/b) depends on the Poisson’s ratio ν and the 
ratio a/b of the semiaxes of the contact elliptical surface only. The functions C26 and C66 are 
marked in the publication Garg, V. K. & Dukkipati, R. V. (1984) as C23 and C33. These Kal-
ker’s continuous creep functions Cij are obtained from discrete creep function by cubic spline 
interpolation method, Siegl J. & Švígler J. (2006). 

6.5.1. Creepages determination 

Creepage occurs in all three directions in which relative motion can occur. This creepage or 
relative slip at the contact point Cij of the i-th wheel set and the j-th wheel in the k-th direc-
tion is defined as a quotient of the slide velocity in this direction and the forward velocity v of 
a vehicle generaly, hence 

 { }s , ,    1,2,6lide kCij
k

v
k

v
= ∈γ . (25) 

There are obtained the creepage in the longitudinal γ1, the lateral γ2 and the normal γ6 directi-
on, Siegl J. & Švígler J. (2006). The equations of Johnson and Vermeulen, Johnson K. L. & 
Vermeulen P. J. (1964), then modify the tangential forces because of creep force linearization, 

when the tangential force size can exceeds the friction force Cij
RW Rf F , which is unreal. 

6.5.2. Equivalent replacement of creep force effects 

The creep force effects are equivalently replaced in the bogie coordinate system B as follow-
ing 

 
, 2 2

3 3

, , 
1 1

Cij Cij
RB Cij

C CB Cij Cij Cij Cij
i j Cij R R

×

= =

   
 =  
    

∑∑
T 0

Q Q
R T T

 (26) 

where the coordinate system Cij  is parallel with the bogie coordinate system. 

7. Numerical simulation 

On the following figures the functions at the left rail are ploted by green color, at the right one 
by blue and the first (front) wheel set by continuous, the second (back) one by dot line type. 
The numerical simulations are made for initial values y0 = 0,005 [m], 0yɺ = 0 [ms-1], ψ0 = 0 

[rad], 0 0ψ =ɺ  [rads-1]. 

7.1. Motion of the free bogie 

On the following figures are visualized some functions of the biaxial bogie motion without 
secondary suspension, i.e. K = 0 and B = 0. 
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Fig. 4: Functions y = y(t) describing the bogie lateral motion for selected forward velocities. 

 

Fig. 5: Lateral creep forces and result creep force affecting the bogie motion for the forward 
velocity 50 [kmh-1]. 

7.2. Motion of the suspended bogie in the vehicle case 

On the following figures are visualized some functions of the biaxial bogie motion with sec-

B
 

C
ij
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ondary suspension. On the Fig. 8 up to the Fig. 11 the creepages and the creep force effects 
are ploted for the forward velocity v = 50 [kmh-1]. 

 

 

Fig. 6: Functions y = y(t) describing the bogie lateral motion for selected forward velocities. 
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Fig. 7: Functions ( )y y y=ɺ ɺ  or the phase trajectories for selected forward velocities v and mo-

tion time t = 60 [s]. 

 

Fig. 8: Creepages γi. 

C
ij

C
ij

C
ij

6 

844



 

 

Fig. 9: Longitudinal creep forces. 

 

Fig. 10: Lateral creep forces. 
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Fig. 11: Normal creep moments. 

8. Results and discussion 

The motion numerical solution of the loaded bogie by the half weight of the vehicle case 
without and with secondary suspension was made for various forward velocities on the 
straight railway. The lateral motion of the free biaxial bogie, i.e. without secondary suspen-
sion, moves steady approximately up to the forward velocity v = 10 [kmh-1], Fig. 4. For higher 
velocity the bogie’s motion is unsteady. The bogie with the secondary suspension is steady 
for every forward velocity. The lateral motion of the bogie mass center with the secondary 

suspension is presented as a function y = y(t) and ( )( )y y y t=ɺ ɺ  which is called the phase tra-

jectory, Fig. 6, 7. 

9. Conclusion 

The mathematical model of the railway vehicle bogie was created and the numerical solution 
of this mathematical model was made by own developed software which allows to simulate a 
bogie motion in dependence on initial values. The next work will be oriented to the creation 
of a mathematical model of a complete railway vehicle with two doubly suspended bogies and 
eventually with consideration of a finite stiffness of a rail with a subsoil. 
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