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Summary: Vlasov's mathematical model of the restrained torsion of a prismatic 
thin-walled open-section beam contains derivatives of unknown functions which 
are the torque, the bimoment, the twist, and the rotation of cross sections. But 
these derivatives are not defined at such points between ends of a beam where a 
concentrated torsional load or a concentrated bimoment load or an internal 
support or an internal coupling is located. In order that the Vlasov's 
mathematical model of thin-walled open-section elastic beam subjected to torsion 
allowing for constrained warping may hold true also at the points of discontinuity 
mentioned, which are common in calculating experience, we have used the 
distributional derivatives for the unknown quantities, and developed generalized 
mathematical model in the form of a system of ordinary differential equations 
(SODE). In order to solve this generalized model we use the Laplace transform, 
and find the general solution which is the generalization of the initial parameters' 
method since it covers also bars with internal couplings. 

1. Introduction 
   The beams with discontinuities in loading or geometry are usually calculated in such a way 
that they are at first divided into subintervals without the discontinuities. Then continuous 
solutions with integration constants are determined for every such subinterval apart. Finally 
the integration constants are determined from boundary and continuity conditions. 

   In this paper we use Dirac distribution and the Heaviside's unit step function in order to 
derive a generalized Vlasov's model of the restrained torsion of a prismatic thin-walled open-
section beam in the form of a system of ordinary differential equations (SODE) (19) to (22) 
which covers the discontinuities in loading and geometry. This generalized mathematical 
model of restrained torsion may be solved like only one differential problem without dividing 
the beam into subintervals and without continuity conditions. 

   A discontinuity in the twist may occur at a point in which a rigid coupling between bar 
segments is located. Discontinuities in the rotation of cross sections and in the twist may be 
found at a point in which an elastic coupling between bar segments is situated. Magnitudes of 
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these discontinuities can be determined through the use of deformation conditions. There is 
zero axial stress acting on the face of bar segments at a coupling. Hence the bimoment is zero 
at the coupling.  

   Discontinuities in distributed torsional load m(x) may be expressed by means of Heaviside's 
unit step function moved to points of the discontinuities. 

2. The scope of the validity of Vlasov's mathematical model of the restrained torsion of 
a prismatic thin-walled open-section beam  

Vlasov's mathematical model of the restrained torsion of a prismatic thin-walled open-section 
beam may be expressed in the form of the first order ordinary differential equation system as 
follows 

                                                 
 = d

d
x ( )MT x − ( )m x

                                                                (1)
 

                                                 
 = d

d
x ( )B x  − ( )MT x G JT ( )θ x

                                              (2)
 

                                                  
 = d

d
x ( )θ x −

( )B x
E Jω                                                                 (3)

 

                                                  
 = d

d
x ( )φ x ( )θ x

                                                                     (4) 
where 

MT(x) the torque [Nm], 
B(x) the bimoment [Nm2], 
( )θ x  the twist [radm-1], 
( )φ x  the rotation of cross sections [rad] , 

m(x) a distributed torsion load [N], 
JT  polar moment of inertia [m4], 
Jω  warping resistance [m6],  

E Young's modulus of elasticity [Pa], 
G shear modulus of elasticity [Pa]. 

    The SODE (1) to (4) is valid in the space of real functions providing that all the derivatives 
exist. However the unknown functions ( )MT x , ( )B x , ( )θ x , ( )φ x  may have discontinuities 
which are common in calculating experience. The SODE (1) to (4) does not hold good at such 
points between ends of a bar in which the unknown functions have discontinuities.    

    When we need to express a derivative of a discontinuous quantity we must use a space of 
distributions with a distributional derivative instead of the space of real functions. The 
distributional derivative of a discontinuous generalized function f(x) which has one jump 
discontinuity at  = x x0  is expressed as follows: 

                                          f ´ = {f ´(x)}+ [ ]f
x0

. ( )Dirac  − x x0                                                (5) 
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where 

{f ´(x)} classical derivative, 
[ ]f

x0
= f( x0 + 0) - f( x0 - 0) magnitude of the jump discontinuity of f(x) at  = x x0 , 

( )Dirac  − x x0  Dirac distribution moved to  = x x0 . 

3. The distributional derivative of the unknown quantities with one jump discontinuity   
 

    Let the torque MT(x) have a jump discontinuity at point x = a1 of magnitude:                                        

                                         
 =  − ( )MT  + a1 0 ( )MT  − a1 0 −M1                                                   (6) 

as a result of a concentrated force couple action. The equation (6) stands for equilibrium of an 
infinitesimal element which was cut out with the concentrated force couple. Then the 
distributional derivative (5) of MT(x) is  

                                       MT´ = -m(x) – M1 Dirac(x – a1) .                                                      (7) 

   Let the bimoment B(x) have a jump discontinuity at x = b1 of magnitude: 

                                       =  − ( )B  + b1 0 ( )B  − b1 0 −B1 .                                                          (8) 

as a result of a line force p1(s) acting in the axial direction of a thin-walled beam along the 
middle line at x = b1. The equation (8) was obtained from force equilibrium of an infinitesimal 
element that was cut out from middle surface of width ds for dx = 0: 

                  =  +  − ( )σx , = x  + b1 0 s dA ( )p1 s ds ( )σx , = x  − b1 0 s dA 0
    ,                              (9) 

which may be multiplied by a warping function ω(s), and integrated along the cross-sectional 
centerline from s = 0 to s = n as follows:  

 +  − d⌠
⌡


0

n

( )σx , = x  + b1 0 s ( )ω s ( )δ s s d⌠
⌡


0

n

( )p1 s ( )ω s s d⌠
⌡


0

n

( )σx , = x  − b1 0 s ( )ω s ( )δ s s

0 = , (10) 
where 

dA differential of the cross-sectional area [m2], 
( )σx ,x s  axial stresses due to restrained warping [Pa], 

p1(s) axial line force acting along the cross-sectional centerline at x = b1 [Nm-1], 
ω(s) warping function [m2] , 
( )δ s

 thickness of the profile [m], 
s curvilinear coordinate along the middle line (cross-sectional centerline)  [m]. 
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Thus the distributional derivative of the bimoment is as follows 

                              B´ = MT(x) – G JT θ(x) -  B1 Dirac(x – b1) ,                                               (11) 

where the concentrated bimoment load is determined as  

                                                              = B1 d⌠
⌡


0

n

( )p1 s ( )ω s s
    .                                         (12)

                                                  

   Let the twist have a jump discontinuity at x = c1 of magnitude 

                                             =  − ( )θ  + c1 0 ( )θ  − c1 0 Θ1                                                        (13)      

owing to a coupling placed between ends of a beam. Thus the distributional derivative of twist 
is as follows:  

                                       θ ´ = −  + 
( )B x

E Jω
Θ1 ( )Dirac  − x c1      .                                             (14) 

The unknown magnitude Θ1 is determined from a condition that the internal coupling does 
not transmit the internal bimoment because there are zero axial stresses on the coupling faces 
at x = c1.  

   Let the rotation of cross sections have a jump discontinuity at x = d1 of magnitude: 

                                              =  − ( )φ  + d1 0 ( )φ  − d1 0 Φ1                                                      (15) 

by virtue of an elastic coupling with a torsional stiffness kT situated between ends of a beam. 
Hence the distributional derivative of the rotation of cross sections is as follows  

                                              
φ ´ = θ(x) + Φ1 ( )Dirac  − x d1  .                                              (16) 

The unknown magnitude Φ1 is determined from a condition of the elastic coupling: 

                                                MT (d1 + 0) =  kT Φ1    .                                                           (17)                                             

This condition holds good also in such a case that there is a concentrated force couple 
connected to the internal coupling from the left. If the concentrated force couple is connected 
to the right part of the internal coupling, then a modified deformation condition has to be used 
as follows: 

                                                 MT (d1 - 0) =  kT Φ1    .                                                           (18)    

4. Generalized SODE of Vlasov's mathematical model of the restrained torsion of a 
prismatic thin-walled open-section beam 

Let the torque MT(x) have jump discontinuities: M1 at x = a1, M2 at x = a2, …, Mn1
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at  = x an1
, where  < 0 a1 ,  < 0 a2 , ...,  < 0 an1

.  

Let the bimoment B(x) have jump discontinuities: B1 at x = b1, B2 at x = b2, …, Bn2
at 

 = x bn2
, where  < 0 b1 ,  < 0 b2 , … ,  < 0 bn2

 .  

Let the twist ( )θ x have jump discontinuities: Θ1 at x = c1, Θ2 at x = c2, …, Θn3
at  = x cn3

, 

where  < 0 c1 ,  < 0 c2 , … ,  < 0 cn3
 .  

Let the rotation of cross sections ( )φ x have jump discontinuities: Φ1 at x = d1, Φ2 at x = d2, 
…, Φn4

at  = x dn4
, where  < 0 d1 ,  < 0 d2 , … ,  < 0 dn4

. 

     If we now generalize the distributional derivatives (7), (11), (14), (16) for final number of 
jump discontinuities, then we obtain a generalized SODE of Vlasov’s model of the restrained 
torsion of a thin-walled beam as follows 

                           
 = d

d
x ( )MT x −  − ( )m x











∑
 = i 1

n1

Mi ( )Dirac  − x ai
                                            (19) 

                            
 = d

d
x ( )B x  −  − ( )MT x G JT ( )θ x











∑
 = i 1

n2

Bi ( )Dirac  − x bi
                           (20) 

                             
 = d

d
x ( )θ x −  + 

( )B x
E Jω











∑
 = i 1

n3

Θi ( )Dirac  − x ci
                                            (21) 

                             
 = d

d
x ( )φ x  + ( )θ x











∑
 = i 1

n4

Φi ( )Dirac  − x di
                                                (22) 

5. Solution procedure of the generalized SODE of Vlasov’s model of the restrained 
torsion of a thin-walled open-section prismatic beam 

The general solution to the generalized SODE (19), (20), (21), (22) is determined by means of 
the Laplace transform in three steps: 

a) Transform differential equations (19), (20), (21), (22) into an algebraic system. 
b) Find a solution to the algebraic system. 

c) Apply the inverse Laplace transformation to the solution of the algebraic system. 

5.1. The Laplace transform of the SODE (19), (20), (21), (22) [ λ2 = G JT / (E Jω) ] 

         
 =  − p ( )laplace , ,( )MT x x p ( )MT 0 −  − ( )laplace , ,( )m x x p











∑
 = i 1

n1

Mi e
( )−p ai

               (23)
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 − p ( )laplace , ,( )B x x p ( )B 0  = 

 −  − ( )laplace , ,( )MT x x p λ2 E Jω ( )laplace , ,( )θ x x p










∑
 = i 1

n2

Bi e
( )−p bi

             (24)

 

            
 =  − p ( )laplace , ,( )θ x x p ( )θ 0 −  + 

( )laplace , ,( )B x x p
E Jω











∑
 = i 1

n3

Θi e
( )−p ci

                (25) 
 

               
 =  − p ( )laplace , ,( )φ x x p ( )φ 0  + ( )laplace , ,( )θ x x p











∑
 = i 1

n4

Φi e
( )−p di

                  (26) 
where 

p a variable for the Laplace transform 

laplace Laplace transform operator 

laplace(f(x), x, p) Laplace transform of  f(x)  

MT(0), B(0), ( )θ 0 , ( )φ 0   constants of integration in the form of initial parameters 

5.2 The Laplace transforms of unknown quantities 
Solution to the algebraic system of equations (23), (24), (25), (26) is:  

    
 = ( )laplace , ,( )MT x x p  −  − 

( )MT 0
p

( )laplace , ,( )m x x p
p











∑
 = i 1

n1 Mi e
( )−p ai

p
                      (27)

 

   
( )laplace , ,( )B x x p

( )MT 0

 − p2 λ2
p ( )B 0

 − p2 λ2

λ2 E Jω ( )θ 0

 − p2 λ2











∑
 = i 1

n1 e
( )−p ai Mi

 − p2 λ2 +  −  −  = 
        











∑
 = i 1

n2 e
( )−p bi p Bi

 − p2 λ2











∑
 = i 1

n3 e
( )−p ci E Jω λ2 Θi

 − p2 λ2
( )laplace , ,( )m x x p

 − p2 λ2 −  −  − 
                       (28) 

   
( )laplace , ,( )θ x x p

( )MT 0

E Jω ( ) − p2 λ2 p
( )B 0

E Jω ( ) − p2 λ2
p ( )θ 0

 − p2 λ2−  −  +  = 
   












∑
 = i 1

n1 e
( )−p ai

Mi

E Jω ( ) − p2 λ2 p












∑
 = i 1

n2 e
( )−p bi

Bi

E Jω ( ) − p2 λ2











∑
 = i 1

n3 p e
( )−p ci

Θi

 − p2 λ2 +  +  + 

( )laplace , ,( )m x x p
p E Jω ( ) − p2 λ2 + 

                                                                                                  (29) 
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( )laplace , ,( )φ x x p
( )MT 0

E Jω p2 ( ) − p2 λ2
( )B 0

E Jω p ( ) − p2 λ2
( )θ 0
 − p2 λ2

( )φ 0
p−  −  +  +  = 












∑
 = i 1

n1 e
( )−p ai

Mi

E Jω p2 ( ) − p2 λ2












∑
 = i 1

n2 e
( )−p bi

Bi

E Jω p ( ) − p2 λ2











∑
 = i 1

n3 e
( )−p ci

Θi

 − p2 λ2 +  +  + 











∑
 = i 1

n4 Φi e
( )−p di

p
( )laplace , ,( )m x x p

E Jω p2 ( ) − p2 λ2 +  + 
                                                                     (30) 

 
 

5.3 The general solution to the generalized SODE [ λ2 = G JT / (E Jω) ] 

The system of differential equations (19), (20), (21), (22) has the general solution (31), (32), 
(33), (34) which is determined like inverse Laplace transformation applied to images (27), 
(28), (29), (30). 
 

 = ( )MT x  −  − ( )MT 0 d⌠
⌡0

x

( )m ξ ξ










∑
 = i 1

n1

Mi ( )Heaviside  − x ai
                                               (31) 

 
  

( )B x
( )MT 0 ( )sinh λ x

λ
( )B 0 ( )cosh λ x λ E Jω ( )sinh λ x ( )θ 0 +  −  = 

∑
 = i 1

n1

Mi ( )Heaviside  − x ai ( )sinh λ ( ) − x ai

λ
 − 











∑
 = i 1

n2

Bi ( )Heaviside  − x bi ( )cosh λ ( ) − x bi − 

λ E Jω











∑
 = i 1

n3

( )Heaviside  − x ci Θi ( )sinh λ ( ) − x ci − 

 − 
1
2 d⌠

⌡


0

x

( )m ξ e ( )λ ( )−  + x ξ
ξ













1
2 d⌠

⌡


0

x

( )m ξ e ( )−λ ( )−  + x ξ
ξ

λ
 + 

                                         (32) 
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( )θ x
( ) − 1 ( )cosh λ x ( )MT 0

Jω E λ2
( )sinh λ x ( )B 0
E Jω λ

( )θ 0 ( )cosh λ x −  +  = 

∑
 = i 1

n1

2








sinh

λ ( ) − x ai

2

2

( )Heaviside  − x ai Mi

Jω E λ2 + 

∑
 = i 1

n2

( )Heaviside  − x bi ( )sinh λ ( ) − x bi Bi

E Jω λ
 + 











∑
 = i 1

n3

Θi ( )Heaviside  − x ci ( )cosh λ ( ) − x ci + 

 +  − 
1
2 d⌠

⌡


0

x

( )m ξ e ( )−λ ( )−  + x ξ
ξ

1
2 d⌠

⌡


0

x

( )m ξ e ( )λ ( )−  + x ξ
ξ d⌠

⌡0

x

( )m ξ ξ

Jω E λ2 + 
                      (33) 

 
( )φ x 









 − 
x

Jω E λ2
( )sinh λ x

Jω E λ3 ( )MT 0 ( ) − 1 ( )cosh λ x ( )B 0
Jω E λ2

( )sinh λ x ( )θ 0
λ

( )φ 0 +  +  +  = 












∑
 = i 1

n1 










 − 

 − x ai

Jω E λ2

( )sinh λ ( ) − x ai

Jω E λ3 ( )Heaviside  − x ai Mi − 












∑
 = i 1

n2 2








sinh

λ ( ) − x bi

2

2

( )Heaviside  − x bi Bi

Jω E λ2 + 

∑
 = i 1

n3

( )Heaviside  − x ci Θi ( )sinh λ ( )−  + x ci

λ











∑
 = i 1

n4

( )Heaviside  − x di Φi −  + 

1
E Jω λ2 d⌠

⌡0

x

( )m ξ ( )−  + x ξ ξ

 − d⌠
⌡


0

x

( )m ξ e ( )−λ ( )−  + x ξ
ξ d⌠

⌡


0

x

( )m ξ e ( )λ ( )−  + x ξ
ξ

2 E Jω λ3 +  + 
   (34) 

6. Conclusions 
The contribution of this paper is that the generalized SODE (19) to (22) holds true also for 
discontinuous unknown quantities, and that its general solution (31) to (34) stands good for 
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bars containing internal rigid or elastic couplings as well. The general solution (31) to (34) 
was found by means of the Laplace transform and with using the symbolic programming 
approach. The integration constants are in the form of initial parameters. The general solution 
(31) to (34) is the generalization of the initial parameters method because it covers also bars 
with internal couplings. 
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