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Summary:  This contribution deals with the analysis of three member mechanical 
system with higher kinematical pair which is created by conjugated screw 
surfaces. Axes of both surfaces, which are loaded by a force system, are in a skew 
position. The analysis of the local incorrect contact of conjugated screw surfaces 
with respect to influence of the force contact character is made by using the 
theory of screws. Difference between the normal force acting in the isolated 
contact point and in the point of the contact curve is shown. 

1.  Introduction 

Bodies of three member mechanic systems with higher kinematical pair have their contact at a 
point or curve. In consequence of force and temperature strain the position of bodies is 
changed and therefore a modification of character of the contact take place. In this paper the 
higher kinematical pair, that is created by two screw surfaces with parallel axes, have in the 
theoretical position the correct contact at the curve. In consequence of a machine inaccuracy 
and the force and temperature loading the originally parallel position of axes changes into a 
skew position. This change causes the variation of the surface contact character and their 
relative motion. The curve contact changes into contact at the point and the originally relative 
rolling motion changes into a spatial motion. Instantaneous state of the relative motion of both 
surfaces is possible to express with a force screw, wrench, and kinematical screw, twist. This 
contribution deals with the analysis of the local incorrect contact of conjugated screw surfaces 
with using of the theory of screws with the view to influence the force contact character. An 
aim of this paper is to determine the force, acting between both conjugated surfaces at the 
contact point in instantaneous time. Magnitude of the normal force, that is determined by 
force field rising outside surfaces and acting on each of them, depends on a form these 
surfaces and can be influenced by their shape. This quantity is important for a determination 
of a local surface strain. Used theory of screws is applied to screw machines i.e. screw 
compressors and screw engines which are generated by combination of compressors and 
expanders. Screw machines contain toothed rotors with complicated and specified screw 
surfaces. 
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2.  Kinematical screws, twists 

Let us consider two rigid bodies 2 and 3 with a spatial moving. Kinematical state each of 
them is determined with instantaneous twist 222333 ,:,,: pp ωηωη  around skew axes 32,oo , 

Fig. 1. where 3,2, =ipi  marks parameter of twist. Relative motion both bodies is given by 

relative twist 323232 ,: pωη  around an axis 32o  which position is determined by the mutual 

position of axes 32,oo  that is given by their shortest distance, transversal, a and the 

angle 32 γγΣ += .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1:   Configuration of twist axes 

Then the position of the axis of relative twist 32o  can be determined (Šejvl, 1967, Švígler et 

al., 2006) in an auxiliary coordinate system ( )2222 ,, kji≡R  with the transversal 2a  and 

angle 2γ  
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Both quantities we get from system of equations, Fig. 1, 

 32 aaa +=  ,    32 γγΣ +=  , 

 23233322 ,sinsin ωωγωγω i==  , (2) 

 3333322222 sinsinsinsin γγωγγω vava +=+  , 

that can be obtained using of classical kinematical way. Kinematical quantities 3232,vω  of the 

relative twist are given, Fig. 1, with expressions 

 223332 cossin γωγωω +=  ,  

 332233322232 coscossinsin γγγωγω vvaav −−+=  (3) 

and the parameter of the twist is 
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The axis 32o  creates a line of a skew straight line 

surface of the 3rd degree, Plücker conoid, Fig. 2. 
This surface, that is a locus of twists resulting from 
composition of twists with varying ratio on two 
given skew straight line can be determined 
(Kadeřávek at al., 1932) by elliptical section k of 
circular cylindrical surface, straight line d and a 
vanishing line of the first plane of projection, π , 
Fig. 3. This surface has two torsal planes 21 ,ττ  and 
each  of   which  contains  one  torsal  line t.  These  

 

 

 

 

 

 

 

         Fig. 2:   Plücker conoid Fig. 3:   Basic geometry of the Plücker conoid 

torsal lines 21, tt  are perpendicular each other. There are further two intersecting straight line 

on the Plücker conoid which are perpendicular each other too. Their  point of intersection kΩ  

lies at a half of the conoid height p. These straight lines are called principal lines of the 
Plücker conoid and together with the straight line d create the fundamental coordinate system 
of the Plücker conoid ( )kkkkR 321 ,, eee= . In the fundamental coordinate system of the 

Plücker conoid some line o some line o of this surface can be expressed 

 ϑϑ cossinpyk =  ,      ϑtgxz kk =  , (5) 
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where p is  a distance between two torsal planes and ϑ  is an angle which the line o contains 
with the axis kx . Geometric and kinematics connections between twists 3232 ,, ηηη , lying on 

lines  3232 ,, ooo ,  can  be  demonstrated,  Fig. 4,  with  using  of the Disteli  circle. From this  

circle the position of the axis 

32o  and the parameter 32p  of 

the relative twist 32η  can be 

determined. In a special case, 
given by relation 032 == pp , 

twists 333 ,: pωη  and 

222 ,: pωη , transform into 
rotary motion, the abscissa 

MN  fuses with AB  and the 
point C transfers into the point 
H, so 032 =p . The axis 32o  

creates bewelled skew ruled 
surfaces by rotary motion 
around axes 32, oo  conse  

cutively  which take contact at 
the axis 32o .  

                                                       Fig. 4:   Disteli circle 

These surfaces create axodes of the relative twist. In a case that twists 2η  and 3η  change into 

rotary motion with angular velocities 32, ωω  the bewelled skew ruled surfaces transform into 

surfaces of rotary hyperboloids of one sheet. Skew ruled surfaces are determined by their 
parameter distribution which can be determined from the equation system (2). From 
kinematical point of view the skew ruled surface is created by a motion of the straight line 32o  

that is caused by components of vectors 3322 ,,, ωvωv  which are perpendicular to the axis 

32o . The parameter distribution of this skew ruled surface is expressed then as a ration of the 

velocity of the translational motion and the angular velocity. The parameter distribution of 
axodes of the relative twist (Šejvl, 1967) is possible to expressed with form 

 ( )2233
32

sin
coscos γγ
Σ

γγδ tgptgpa ++=  . (6) 

The parameter distribution, that is the same for both axodes, can be illustrated, Fig. 4, with the 
abscissa FE ′ . Generating  of  the  Plücker  conoid is demonstrated in Fig. 5. General stright  

line is determined in the fundamental coordinate system kR  with Eq. (5). This coordinate 

system can be determined by using of the kinematics in the following way. Let us consider, 
Fig. 6, two screws βββααα ωΘωΘ pp ,:,,: , perpendicular each other, that lie upon the 

principal  straight lines βα oo ,  of the Plücker conoid. By composition of these screws we 

obtain the screw ΘΘωΘ p,: , lying on the Plücker conoid which is determined with 

 ϑϑ βαΘ
22 sincos ppp +=  ,          ( ) ϑϑβαΘ cossinppy −=  . (7) 
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Let be remarked that it is identical 
if we discussed about the twist or 
wrench. Now we consider a 
reciprocal problem. For two given 
screws ( )222 , pωΘ  and ( )333 , pωΘ  

we want to determine principal 
screws  βα ΘΘ , .  Applying  of  the 

equation (7) to each screw 32 , ΘΘ , 

using  relations  32 ϑϑΣ +=     and 

23 yya −=  , we obtain, after 

ordering, followed relations 

 
( )

Σβα sin
23

2 ppa
pp

−+=−  , 

 Σβα gapppp cot23 −+=+  , 

 





 −+=

a

pp
arctgv 23

3 2
1 Σ , (8) 

 ( )[ ]agppy +−= Σcot
2
1

323  ,  

which determine the principal 
screws βα ΘΘ ,  appertaining to  

screws 32 , ΘΘ .   

 Fig. 5:   Generating of the Plücker conoid 
  
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6:   Principal lines βα oo ,  and general line of the Plücker conoid 
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3.  Force screw, wrench 

As was said the equation (5) and equations (7), (8) are valid both twists and wrenches. Let us 
now consider a rigid body loaded by force field that is caused by medium pressure on the 
surface of the body. The result of this pressure is a rise of an instantaneous force field. The 
force field which consist from forces and couples in nodes kL  of selected coordinate axis, 

Fig. 7 was determined with relations 

 ∑∑
==

==
s

i
ik

s

i
ik

11

, MMFF  (9) 

where ii MF ,  are results of the pressure on an 

elementary area of surface transformed into 
node k, nk ÷= 1 , of the axis. Resultant of the 
force field is given with expressions 

 k

s

k
k
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k
k

n

k
k FrMMFF ∑∑∑

===

×+==
111

,  . (10) 

        Fig. 7:   Force effects on surface element 

Both resultants F, M can be replaced with wrench that is determined by direction of forces 
and a position vector F/MFr ×=E . Let us suppose a body performing a spatial motion 

which is given by the twist ηηη p,: ′  where η  denotes kinematical screw η  with the axis η , 

amplitude of the twist η′  and the pitch of the screw ηp . The body is loaded by force field 

represented by the wrench ρρρ p,: ′′  where ρ  denotes force screw ρ  with the axisρ , 

intensity of the wrench, force, ρ ′′  and the pitch of the screw ρp . Then the instantaneous 

virtual work (Ball, 1998) done by the given twist against the given wrench is 

 ( )[ ]φφηρωηρ ηρηρ sincos~2 dppW −+′′′=′′′=  , (11) 

where ( )[ ]φφω ηρηρ sincos
2

1~ dpp −+=  is the virtual coefficient in which d is the shortest 

distance between ρ  , η  and φ  is the angle between ρ  and η . Using the equation (11) the 

wrench ρ  can be replaced with six wrenches 61,,: ÷=′′ ip
iii ρρρ , in six given screw axesiρ . 

Let us consider six arbitrarily twists 61, ÷=ijη , appertaining to the body. The six wrenches 

iρ  can be obtained under the condition that virtual work of the wrenchρ , acting against one 

of the six arbitrarily selected twist jη , must do the same quantity of work as the sum of the 

six wrenches iρ  acting against the same twist jη . By taking five other twist jη  five more 

equations for iρ  are obtained. It stands to reason that after replacing wrenches iρ  with 

reciprocal wrenches R
iρ  the sum of virtual work which was done by the wrench ρ  and the 

reciprocal wrenches R
iρ  must be zero. Then it is possible to speak about equilibrium of 

wrenches ρ  and R
iρ  where R

iρ  are wrenches expressing reaction force effects. Let be noticed 

that the determination of six screwiρ , or R
iρ , on arbitrarily chosen axes iρ , denotes the 

determination of six intensities iρ ′′  or R
iρ ′′  laying on these axes. Hence pitches of these 
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wrenches iρ , or R
iρ , and the wrench ρ  must be the same. Then we obtain a classical case of 

the spatial problem in that the space force system, represented with wrenchρ , and reaction 

forces R
iρ ′′  on six given axes take a equilibrium. 

4.  Application 

Application is focused in screw machines, i.e. screw compressors and engines, with liquid 
injection in which tooth surfaces of rotors beside of creation of a workspace and its sealing 
ensure the kinematical and force accouplement both rotors. The force field, caused by 
compression of medium in chambers of the screw machine, is considered in the phase just 
before the opening of the discharge which is given by angle of roll of the male rotor o03 =ϕ . 

Numerical solution was made for following geometric parameters of the screw machine: axes 
distance mmaw 85= , gear ration 2,132 =i , where 2 marks the female rotor and 3 is the male 

rotor, helix angle on the rolling cylinders of both rotors o45=γ , length of tooth parts of 
rotors 8,193=l  mm. Resultants of the force field, acting to each of both rotors, are given with 

eq. (10), Both resultants 3,2,, =iii MF , Fig. 8, can be replaced with wrenches ii ρρ ′′: ,  

ii Fp
i

=′′∧ ρρ ,  3,2, ==′′ iMp
ii Oi ρρ . According classical mechanic action and reaction 

effects take the equilibrium which is expressed with 

  0RRF =++
ii BAi  , 

  ( ) 0MMFrRrr =++×−×−
iiiii SiiABAB  , (12) 

3,2=i  where 
iSM  are thought couple of forces lying on axes io  added to rotors for the 

equilibrium. It was necessary to use this couple of forces then conjugated screw tooth surfaces 
of meshing rotors touch each other in a curve and distribution of normal forces along this 
curve is unknown. Results of the numerical solution the equation (15) under the mentioned 
condition for the angle of role o03 =ϕ  of the male role are presented in Tab. 1. 

Tab. 1:   Components of wrenches, reaction forces and their location for o03 =ϕ  

Wrenches 

 Male rotor Female rotor 

components [ ]N3F  [ ]Nmo3M  [ ]mE3
r  [ ]N2F  [ ]Nmo2M  [ ]mE3

r  

x 2048.51 -22.85 0.023 2287.26 -6.27 0.009 

y -2386.28 26.62 -0.044 2407.82 -6.60 0.012 

z -1251.39 13.96 0.122 -313.54 0.86 0.153 

Reaction forces 

components [ ]NRA3
 [ ]NRB3

 [ ]NRA2
 [ ]NRB2

 

x 670.96 1377.55 821.17 1466.09 

y -901.69 -1484.59 812.40 1595.42 

z 0.00 -1251.39 0.00 -313,54 
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In consequence of the accepted condition obtained results are not exact but they are sufficient 
for further solution. 

 

Fig. 8:   Wrenches and reaction forces at seating of rotors 

 Except the force field the screw machine housing is loaded by a temperature field. 
Distribution of the temperature field acting to housing, which was obtained by measurement, 
is presented in Fig. 9.  Displacements  of  bearing  centers  

ii BA µµ , , 3,2=i ,  caused by force  

and temperature fields is presented in Tab. 2. Displacements of bearing centers are 
demonstrated in Fig. 10. A coordinate system( )kj,i,≡R , in which the undeformed position 

of the male rotor axis 3o  coalesces with coordinate axis z, creates the basic coordinate system. 

The position of rotors in the basic coordinate system R is determined with relations 
[ ] [ ] T

wO
T

O a 0,,0,0,0,0
23

== rr  and [ ]T
OO 1,0,0

23
== νν . 

After a bearing displacements axes 23, oo  translate into new positions ∆∆
32 , oo  which are 

determined with position vectors [ ] [ ]T
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T

oooo
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unit vectors [ ]T
zyxO
,cos,cos,cos 333

3
λλλ∆ =ν  ,  [ ]T

zyxO
,cos,cos,cos 222

2
λλλ∆ =ν . Relative 

position of axes ∆∆
32 , oo  is given by the transversal d and angle ∆Σ  which are defined with 

relations 

  ∆∆
2233 oDDo

rrdrr =+++  ,         
∆∆

∆∆∆Σ
23

23cos
oo

oo

νν

νν

⋅

⋅
=  . (13) 

 

 

 

 

  

 

 

 

 

Fig. 9:   Temperature field 

 

Tab. 2:   Displacements of bearing centers 

3Au  
3Bu  

2Au  
2Bu  Components 

[ ]mµ  

Displacements under force housing deformation 

x -0.212 1.226 0.020 1.711 

y -0.221 -0.071 -0.203 -0.116 

z -0.720 -1.585 -0.659 -1.595 

Displacements under force bearing elastic deformation 

x 0.850 7.104 1.806 4.799 

y -1.142 -7.656 1.787 5.223 

z 0.000 0.560 0.000 -0.103 

Displacements under temperature housing deformation  

x -20.659 -29.729 42.06 41.801 

y 38.611 76.688 41.422 46.925 

z 0.000 0.000 0.000 0.000 

Total displacements 

x -20.021 -21.399 43.886 48.311 

y 37.248 68.962 43.006 52.032 

z -0.720 -2.145 -0.659 -1.698 
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j
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Fig. 10:   Axes of rotors in deformed positions with Plücker conoid 

where 0dd d=  and unit vector 
∆∆

∆∆

23

23

0

oo

oo

νν

νν

d
×

×
= . The location of the Plücker coordinate 

system has to fulfilled the condition that transversal d lies on the axis ky  and the origin kΩ  of 

the coordinate system kR  is at half of the length of the transversal d and angles between the 

coordinate axis kx  and axes ∆
32o  is defined with the equation (5) where 2232 γϑϑϑ ∆∆ +==  and 

2γtg  is determined with the second equation of the system (1). The position of the axis ∆32o  in 

the fundamental coordinate system kR  is defined with expressions 

 [ ]T

ooR y
k

0,,0
3232
∆∆ =r  ,     [ ]T

oRk 3232 sin,0,cos
32

ϑϑ∆ =ν  . (14) 

For the expression of the axis ∆32o  in the basic coordinate space ( )kj,i,≡R  the 

transformation relation RRT k →:  which is given with 
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to be used. The transformation matrix is given with six sub-matrixes. For transformation of 
the unit vector ∆

32o
ν  the using of the rotary matrix RRk

S  that creates the sub-matrix of the 

matrix RRk
T  is sufficient. Position vectors  ∆

ioRr  of points ∆
iO , Fig. 10, with unit vectors 

∆
ioRν , 3,2=i  and the point ∆

ijRO  with the unit vector ∆
ijoRν , 2,3 == ji , Fig. 11, are 

expressed with their components in Tab. 3. Axes displacement from parallel positions into 
skew arrangement causes a change in the contact of surfaces. The origin curve contact passes 
into the point contact. As a result of this mutation the force, transmitted between both rotors, 
take place at the contact point and not at the curve. 

 

 

Fig. 11:   Position of rotor axes on Plücker conoid 

 

Tab. 3:   Components of position vectors and unit vectors of rotor axes 

components [ ]mm
o∆

3
r  ∆

3o
ν  [ ]mm

o∆
2

r  ∆
2o

ν  [ ]mm
o∆

32
r  ∆

32o
ν  

x 0.0015062 0.00002894 0.0022079 0.00001736 2.2043258 0.00002368 

y -0.00208813 -0.00002394 85.0018713 0.00001306 39.3252740 0.00000712 

z -0.0007200 0.99999999 0.0006590 0.99999999 0.0 0,99999999 
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 For the solution of force effects acting on rotors, which have axes in the skew position, in 
chambers of a work space we use parallel arrangement of rotor axes because the seating 
displacement of rotors has great influence over the contact of surfaces but little influence 
upon forces originate in the work space. Reaction forces at points of rotor seating and at the 
contact point of tooth surfaces we determine by using of the virtual work applied to wrenches 
and twists. In places of rotor seating and in the contact point of surfaces, Fig. 12, wrenches 

Rm
i

m
i ρρ −= , 3,2,61 =÷= mi , for simplifying of record the expression  miρ   will  be 

 

 

 

Fig. 12:   Wrenches effect on rotors 

used, are introduced. Likewise an auxiliary system of twists jη , 61÷=j , was introduced. 

Using of the equation (11) to all wrenches m
iρ  we obtain a system of six equations for forces 

m
iρ ′′  for each of rotors.  Form one of these equations for twist 1η  is followed 
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Other equations for 62, ÷=jjη , are similar. The solution was made for four time levels 

which agree with the angular displacement of the male rotor oooo 54,36,18,03 =ϕ . Acting 

wrenches are shown in the table 1 for the first time level. Position vector of the contact  point 
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was determined numerically and its coordinates with the unit vector of the normal in this 
point are presented in Tab. 4 for the first time level. The system (16) was used for the solution 

Tab. 4:   Point of contact, unit vector of normal for o03 =ϕ  

 Point of contact [m] Unit vector of normal 

x 0.0130 -0.6107 

y 0.0491 -0.4856 

z 0.1220 -0.6255 

of the female rotor equilibrium, 2=m , where the normal force was determined. For the 
solution of the male rotor equilibrium, 3=m , the equation (16) was rewritten, see the 
equation (11), into form 

 ( )
jjjjjjjj

dp ηρηρηρηηρηρηρηρ ωρφφρφχωρωρωρ 3
6

3
5

3
5

3
5

3
2

3
13

~sincoscos...~~~ 3
5

3
5

3
2

3
13 ′′+−′′+++′′+′′=′′   

  (17) 

Tab. 5:   Reaction effects at bindings of rotors for o03 =ϕ  

Female rotor 

[ ]N2
1ρ ′′  [ ]N2

2ρ ′′  [ ]N2
3ρ ′′  [ ]N2

4ρ ′′  [ ]N2
5ρ ′′  [ ]N2

6ρ ′′  

1288.94 515.83 48.63 797.33 4504.75 6700.61 

Male rotor 

[ ]N3
1ρ ′′  [ ]N3

2ρ ′′  [ ]N3
3ρ ′′  [ ]N4

3ρ ′′  [ ]N3
5ρ ′′  [ ]mp 3

5ρ  

-2630.76 -3509.78 -1265.09 397.57 -2933.82 -0.037 

where 61÷=j  and 3
5

3
5 ρρχ p′′=  is the moment of the couple around the axis z and 2

6
3

6 ρρ ′′=′′  

is the normal force in the point of the contact. Obtained results of reaction effects from 
numerical solution of both rotors are presented in Tab. 5 for the first time level. A ratio of 
values of normal forces at the general point of the contact curve and at separated point is         
1 : 4915 for the considered distance 0,1 mm between neighbouring bodies of the contact curve 
on condition uniformly distribute of forces along this curve. 

5.  Conclusions 

Using the theory of screw the relative motion of two rigid bodies with skew axes was solved. 
The axis of the relative screw motion as well as axes of rotary motions of bodies lying on the 
Plücker conoid. This theory was applied to toothed rotors of screw machines i.e. screw 
compressors and screw engines. Already a small displacement of, originally parallel, rotor 
axes which causes their skew position, leads to a change of the character of the surfaces 
contact. The original curvilinear contact modified into the point contact. Forces, acting at 
places of rotor seating and at the contact point of tooth surfaces of rotors, was determined by 
the help of the theory of screw as well. The change of the contact character causes a 
significant increasing of the value of the normal force acting between both surfaces. Theory of 
screws is a suitable instrument for solution of spatial problems of mechanisms with the higher 
kinematics pairs. 
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