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Summary: The main objective of the study presented here is to compare the 
results obtained from numerical simulations and experimental measurements of 
the transonic flow through the 2-D model of the male rotor-housing gap in a dry 
screw compressor for several clearance throat dimensions and pressure ratios. 
With regard to the numerical investigation, a compressible Navier-Stokes solver 
has been developed for the purpose of clearance flow modelling. The presented 
numerical solver is based on the cell-centred finite volume method defined on 
structured quadrilateral grids. For the spacial discretization of the inviscid part 
of the numerical flux, the AUSM scheme with a β -version of the minmod limiter 
is applied. For the time integration, the two stage second order Runge-Kutta 
algorithm is used. Concerning the experimental measurements, the Schlieren 
method in Toepler configuration was carried out. 

1. Introduction 

Mathematical modelling and experimental investigation of transonic flow in very narrow 
channels and gaps is one of the topical and demanding problems of internal aerodynamics. 
Clearance gaps in screw compressors represent one of many applications. Some experimental 
and numerical simulations of gas flow through a 2-D model of the male rotor-housing gap 
(the sealing gap between the head of the male rotor tooth and the screw compressor housing) 
have been already presented (Kauder et al., 2000). All numerical computations introduced in 
this study were performed by CFD package Fluent.  

In (Vimmr, 2004), the early numerical results, which were obtained using a compressible 
Navier-Stokes solver for the case of the laminar clearance flow computation performed for the 
given pressure ratio 5.0012 =pp  through the 2-D model of the male rotor-housing gap with 
the throat dimension of 100 µm, were published. The numerical solver developed by one of 
the authors was based on the cell-centred finite volume formulation of the central explicit 
two-step TVD MacCormack scheme proposed by Causon (1989) for a structured quadrilateral 
grid. 
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Regarding the mentioned 2-D model of the male rotor-housing gap, new optical 
measurements were carried out by Luxa et al. (2008) using the Schlieren method in Toepler 
configuration. The obtained experimental results show that the occurrence of shock waves in 
the supersonic region of the considered 2-D model of the clearance gap is dependent on its 
throat dimension H  and on the pressure ratio 012 pp . 

Therefore, the research attention of this study is focused on the numerical solution of 
a laminar compressible viscous fluid flow through the 2-D model of the male rotor-housing 
gap for three different throat dimensions (200 µm, 350 µm and 500 µm) and for selected 
pressure ratios ( 0.2012 =pp , 0.182012 =pp  and 0.183012 =pp ) with atmospheric 
pressure at the inlet. All numerical results presented here are qualitatively compared with the 
experimental results, which were obtained for the same gap geometry and for the same flow 
conditions. The numerical simulations were performed by a numerical solver based on the 
cell-centred finite volume method defined on structured quadrilateral grids. The numerical 
code is developed to solve the actual transonic flow problems in very narrow channels and 
gaps. For the spacial discretization of the inviscid part of the numerical flux, the AUSM flux 
vector splitting scheme proposed by Liou & Steffen (1993) is applied. The first order spatial 
accuracy of the AUSM scheme is improved to the second order by a linear reconstruction 
with a β -version of the minmod limiter proposed by the authors. The viscous part of the 
numerical flux is modelled using a finite volume version of central differences on dual cells. 
For the time integration, we use the two stage second order Runge-Kutta algorithm.  

2. Problem formulation 

The clearance flow can be reasonably simulated by the computational fluid dynamics (CFD) 
for so called dry compressors, Fig. 1 (left), where no multiphase flow occurs. The male rotor-
housing gap in a dry screw compressor is modelled in a screw compressor frontal cross-
section (the plane perpendicular to rotors axes), Fig. 1 (right), in the form of a two-
dimensional computational domain 2R⊂Ω , Fig. 2. It is bounded by two adiabatic 
impermeable walls WRWSW Ω∂∪Ω∂=Ω∂  that corresponds to the circular part of the screw 

compressor housing WSΩ∂  and to the head of the male rotor tooth WRΩ∂ . The other 

boundaries of the computational domain Ω  represent the inlet 1Ω∂  from the higher pressure 

chamber and the outlet 2Ω∂  to the lower pressure screw compressor chamber, Fig. 2. It is 
assumed that the male rotor does not move. Hence, the influence of the male rotor motion is 
not investigated. 

            

Fig. 1: Dry screw compressor (left). Screw compressor frontal cross-section (right): 1 – male 
rotor, 2 – female rotor, 5 – male rotor-housing gap (considered clearance gap) 
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Fig. 2:  2-D computational domain 2R⊂Ω  with the boundary WΩ∂∪Ω∂∪Ω∂=Ω∂ 21  

Let H  be the throat dimension, i.e. the width of the 2-D clearance gap in its narrowest 
section for 0=x , Fig. 2. The clearance flow is studied for three different throat dimensions 
( =1H 200 µm, =2H 350 µm and =3H 500 µm) and for selected pressure ratios 

( 0.2012 =pp , 0.182012 =pp  and 0.183012 =pp ) with atmospheric pressure at the inlet. 

In this study, four cases are tested numerically and experimentally.  

For the test case A ( =2H 350 µm, 0.2012 =pp ), the reference Reynolds number 

64492 == refrefrefrefref HuRe ηρ  was computed from selected reference values 

10132501 =≡ ppref Pa, 15.29801 =≡ TTref K, 4
22 105.3 −⋅=≡ HH ref m, 287=≡ rrref J/(kg K) 

and 510879.1 −⋅=≡ηηref  kg/(m s) leading to 184.1)( == refrefrefref Trpρ  kg/m3 and 

52.292== refrefref pu ρ  m/s.  

For the test case B ( =3H 500 µm, 0.183012 =pp ), the reference Reynolds number 

92133 == refrefrefrefref HuRe ηρ  was computed from selected reference values 

10132501 =≡ ppref Pa, 15.29801 =≡ TTref K, 4
33 105 −⋅=≡ HH ref m, 287=≡ rrref J/(kg K) 

and 510879.1 −⋅=≡ηηref  kg/(m s) leading to 184.1)( == refrefrefref Trpρ  kg/m3 and 

52.292== refrefref pu ρ  m/s. 

For the test case C ( =1H 200 µm, 0.182012 =pp ), the reference Reynolds number 

36851 == refrefrefrefref HuRe ηρ  was computed from selected reference values 

10132501 =≡ ppref Pa, 15.29801 =≡ TTref K, 4
11 102 −⋅=≡ HH ref m, 287=≡ rrref J/(kg K) 

and 510879.1 −⋅=≡ηηref  kg/(m s) leading to 184.1)( == refrefrefref Trpρ  kg/m3 and 

52.292== refrefref pu ρ  m/s. 

3. Governing equations for laminar compressible fluid flow 

Because of relatively low values of the reference Reynolds numbers refRe  in the considered 

test cases A – C of the clearance flow through the 2-D models of the male rotor-housing gap 
with different throat dimensions H  mentioned above, the laminar flow model described by 
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the non-linear conservative system of the two-dimensional compressible Navier-Stokes (NS) 
equations is assumed for our numerical computations.  

Making an orientation calculation of the Knudsen number Kn  using 

2)( κπrefReMKn = , see Karniadakis et al. (2005), the obtained values for all our 

computations are always lower than 4106 −⋅<Kn . Therefore, the fluid can still be considered 
as a continuum and the application of the complete non-linear system of the compressible NS 
equations for laminar heat-conducting, Newtonian fluid flow in an absolute frame of reference 
is acceptable. In non-dimensional conservative flux vector form, the governing equations are 
written for 2-D flow problems as 
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where TΩ  is the space time cylinder and ),0( NT  is a time interval, 0>NT . The column vector 

( )t,yw  of conservative flow variables and the Cartesian components )(wf , )(wg  of the total 

inviscid flux and )(wfV , )(wgV  of the total viscous flux are defined as 

 4),,,(),( REvut T ∈== ρρρyww ,  Ω∈= Tyx ),(y ,  ),0( NTt ∈ , (2) 

 TupEuvpuu ))(,,,()( 2 ++== ρρρwff , (3) 
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 T
xxyxxxyxxVV qvu ),,,0()( −+== ττττwff , (5) 

 T
yyyyxyyyxVV qvu ),,,0()( −+== ττττwgg . (6) 

In the above, ρ  is the fluid density, p  is the static pressure, E  is the total energy per unit 
volume, u , v  are the Cartesian components of the velocity vector 

Tvu ),(=v , xxτ , xyτ , yxτ , yyτ  are the laminar shear stresses and xq , yq  are the heat flux terms 

given for a Newtonian fluid, (Hirsch, 1990). The external volume forces are not considered in 
all our test cases. 

In this study, we assume the compressible fluid to be a perfect gas, even if the viscous 
effects are taken into account. From the ideal gas equation of state, the static pressure p  is 
used to close the system of the compressible NS equations (1) as follows 

 




 +−−== )(
2

1
)1( 22 vuErTp ρκρ , (7) 

where T  is the thermodynamic temperature, vp ccr −=  is the gas constant per unit of mass, 

pc  and vc  are the specific heat coefficients under constant pressure and constant volume, 

respectively, and 4.1=κ  is the Poisson’s constant (the ratio of  specific heat coefficients 

pc  and vc ). The laminar Prandtl number Pr  is defined for the perfect gas as 

72.0== kcPr pη , where η  is the molecular viscosity and k  is the thermal conductivity. 
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4. Numerical method 

For the discretization of the conservative system of the NS equations (1), the cell-centred 
finite volume method (FVM) on a structured quadrilateral grid was used. In the FVM, the 
bounded computational domain 2R⊂Ω  is subdivided into a finite number of non-
overlapping quadrilateral finite volumes ijΩ  with the boundary ijΩ∂ . Integrating the equation 

(1) over each control volume ijΩ  and applying the Gauss-Ostrogradski’s Theorem, the 

following integral form is obtained 

 Snn
Re

Snn
t

ijijij

VyVx
ref

yxij d)(
1

d)(d ∫∫∫
Ω∂Ω∂Ω

+=++Ω
∂
∂
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where xn  and yn are the Cartesian components of the outward unit vector normal to the 

differential surface Sd of the control volume boundary ijΩ∂ . Substituting the first integral on 

the left side of equation (8) by || ijij Ωw , where ijw  is the numerical solution stored at the cell 

centroids (integral average of w over the control volume ijΩ ) and || ijΩ  is the area of the cell 

ijΩ , we get 
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The integrals in equation (9) can be approximated by a sum of numerical fluxes and equation 
(9) is rewritten in the following semidiscretized form on a quadrilateral control volume ijΩ  as 
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where I
mF  and V

mF  are numerical inviscid and viscous fluxes, respectively, and act through 

the m -th edge of the quadrilateral control volume ijΩ . We denote 4,,1, K=mSm  as the 

length of the m -th cell edge.  

The approximation of the inviscid numerical fluxes I
mF  normal to the m -th edge 

( 4,,1K=m ) of the quadrilateral control volume ijΩ  was performed using the AUSM 

(Advection Upstream Splitting Method) algorithm proposed by Liou & Steffen (1993). The 
inviscid numerical flux vector IF  consists of two physically distinct parts, namely convective 
and pressure terms 
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where ρpEH +=  is the enthalpy, nv ⋅=+= T
yxn vnunV  is the convective velocity normal 

to the appropriate cell interface and cF̂  denotes the convective part of the inviscid numerical 
flux. For each edge dividing two cells in the computational grid, we define the normal Mach 
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numbers for the left (L) and right (R) cells as LnLnL aVM =  and RnRnR aVM = , where La  and 

Ra  are values of the local speed of sound in the left and right cells, respectively. The interface 

convective Mach number RLM  is then determined by using Mach number splitting functions 

( ±Μ ) based on neighbouring normal Mach numbers 

 )()( nRnLRL MMM −+ Μ+Μ= , (12) 

where the Mach number splitting functions are defined in the following way, (Liou, 1996), 
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Similarly, the interface pressure RLp  is obtained with contributions from the left and right 

cells using pressure splitting functions (±Ρ ) based on neighbouring normal Mach numbers 

 RnRLnLRL pMpMp ⋅Ρ+⋅Ρ= −+ )()( , (14) 

where Lp  and Rp  are values of the static pressure in the left and right cells, respectively. The 

pressure splitting functions ±Ρ  are, (Liou, 1996), 
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Consequently, the convective term of the numerical flux through a cell interface can be 
effectively written as 
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The total inviscid AUSM numerical flux through the m -th cell edge of the control volume 

ijΩ  can be finally expressed as 
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It is well known that upwind schemes in general are of the first order accuracy in space. 
Hence, the first order spatial accuracy of the AUSM scheme is improved to the second order 
by a linear reconstruction with a limiter. The linear reconstruction at each control volume of 
the structured quadrilateral grid is built in two independent directions. We assume that the 
neighbouring cells dimensions are comparable. Therefore, we do not perform the coordinates 
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transformation from the physical to the computational space. We compute the following 
vectors 

 jiijx 1
upwind

−−= wwσ ,       ijjix wwσ −= +1
downwind , (18) 

 1
upwind

−−= ijijy wwσ ,        ijijy wwσ −= +1
downwind , (19) 

which are used with the minmod limiter implemented in this study. The minmod limiter is 
defined for two functions a  and b  as 
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 According to the minmod limiter definition (20), we calculate 

 ),(modmin downwindupwindmodmin
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The reconstructed values on the edges of the control volume ijΩ  are evaluated as 
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The total inviscid AUSM numerical flux through the m -th cell edge of the control volume 

ijΩ  is then computed according to equation (17) for  
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In order to stabilize the numerical solution in the regions with very low Mach numbers, the 
following modification of the minmod limiter (20), the so-called β -version of the minmod 
limiter,  has been introduced by the authors 

 ),(modmin)(),(modmin baMba
def

⋅=− ββ ,  (25) 

where the function )(Mβ  is chosen as 
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This modification of the minmod limiter was proposed particularly for solving of these kinds 
of transonic flow problems with separation in very narrow channels and gaps. 

The approximation of the viscous numerical fluxes V
mF  through the m -th edge 

( 4,,1K=m ) of the quadrilateral control volume ijΩ  was performed using a finite volume 

version of central differences on dual cells. For more details, see (Vimmr, 2003). 
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For the time integration of the ordinary differential equation (10) in semidiscretized form, 
we use the two stage second order Runge-Kutta algorithm.  

5. Experimental method 

For the experimental investigation of the clearance flow, a measurement area was designed 
with embedded 2-D model of the male rotor-housing gap which has the same geometry as in 
the case of numerical investigation, Fig. 3. The measurement area was attached to the 
modular wind tunnel of the suction type in the Aerodynamic laboratory of Institute of 
Thermomechanics ASCR in Nový Knín. Its lower part, which represents the model of the 
male rotor tooth, was fixed compared to the upper part, which represents the model of the 
stator. The variable mutual position of both parts enables to change the throat dimension H , 
Fig. 3. In the performed experimental measurements, four different throat dimensions 
( =1H 200 µm, =2H 350 µm, =3H 500 µm and =4H 620 µm) were considered. Both 
sidewalls of the measurement area have optical windows with the diameter of 160 mm, Fig. 3. 
The channel width is set to be 20 mm. The total pressure 01p  at the inlet of the measurement 

area and the static pressure 2p  near the clearance outlet, Fig. 3, were measured in order to 

determine the pressure ratio 012 pp . 

 

Fig. 3: Designed measurement area with the detail of the male rotor-housing gap 

The optical measurement was carried out for four above mentioned throat dimensions 
( 41 HH − ) and for several selected pressure ratios from the range 600.0091.0 012 << pp  
using the Schlieren method in Toepler configuration. For more details regarding the 
description of this experimental method applied for the investigated clearance flow, see (Luxa 
et al., 2008).  

6. Numerical and experimental results 

For the laminar clearance flow computation in all three considered test cases A – C, 
computational grids were used with refinement in the vicinity of the walls and downstream in 
the separation region. For example, the structured computational grid for the test case A with 

90250×  quadrilateral cells is shown in Fig. 4. 
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Regarding the non-dimensional boundary conditions on the boundary 

WΩ∂∪Ω∂∪Ω∂=Ω∂ 21  of the computational domain 2R⊂Ω , identical conditions were 

prescribed for all three test cases at the inlet 1Ω∂  (the total pressure 101 =p , the total 

temperature 101 =T , the inlet angle 1α  of attack of the flow, 0=∂∂ nT  and 0
2

1
=∑ = kk gknτ , 

1,2g = ) and at the rigid walls WΩ∂  ( 0=u , 0=v  and 0=∂∂ nT ). The outlet static pressure 

condition at the boundary 2Ω∂  is the only exception. For the test case A, the static 

pressure was set equal to 2.02 =p , for the test case B: 183.02 =p  and for the test case C: 

182.02 =p . The other outlet boundary conditions ( 0=∂∂ nT  and 0
2

1
=∑ = kk gknτ , 1,2g = ) 

are kept the same for all three test cases. 

 

Fig. 4: Structured computational grid for the test case A (throat dimension =2H 350 µm)  
with 90250×  quadrilateral cells 

Several obtained numerical and experimental results are presented in Fig. 5 – Fig. 13. The 
isolines of the Mach number and the velocity magnitude distribution in the 2-D model of the 
male rotor-housing gap for the test case A ( =2H 350 µm, 0.2012 =pp ) are shown in Fig. 5 

and in Fig. 6. The experimental results visualized in the form of schlieren picture 
corresponding to this test case are introduced in Fig. 7. The results for the test case B 
( =3H 500 µm, 0.183012 =pp ) and for the test case C ( =1H 200 µm, 0.182012 =pp ) are 

presented once again in the form of Mach number isolines, velocity magnitude distributions 
and schlieren pictures, which can be found in Fig. 8 – Fig. 10 and in Fig. 11 – Fig. 13, 
respectively. 

 

Fig. 5: Isolines of the Mach number for the test case A ( =2H 350 µm, 0.2012 =pp ) 
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Fig. 6: Velocity magnitude distribution for the test case A ( =2H 350 µm, 0.2012 =pp ) 

 

Fig. 7: Schlieren picture for the test case A ( =2H 350 µm, 0.2012 =pp ) 

 

Fig. 8: Isolines of the Mach number for the test case B ( =3H 500 µm, 0.183012 =pp ) 

 

Fig. 9: Velocity magnitude distribution for the test case B ( =3H 500 µm, 0.183012 =pp ) 
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Fig. 10: Schlieren picture for the test case B ( =3H 500 µm, 0.183012 =pp ) 

 

Fig. 11: Isolines of the Mach number for the test case C ( =1H 200 µm, 0.182012 =pp ) 

 

Fig. 12: Velocity magnitude distribution for the test case C ( =1H 200 µm, 0.182012 =pp ) 

 

Fig. 13: Schlieren picture for the test case C ( =1H 200 µm, 0.182012 =pp ) 

7. Conclusions 

In regard to the qualitative comparison between the presented schlieren pictures obtained 
from the experimental measurements, which were carried out in the Aerodynamic laboratory 
of Institute of Thermomechanics ASCR in Nový Knín, and the numerical results gained by 
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the developed numerical solver described in this study, it is possible to deduce that both 
numerical and experimental results are comparable for all our three test cases A – C in the    
2-D model of the male rotor-housing gap. Because of the agreement between the numerical 
and experimental results, we can conclude that the proposed numerical method, which 
converged to a steady state solution, may be suitable for the solution of transonic flow 
problems in extremely narrow channels and gaps. 

For the considered throat dimensions (=1H 200 µm, =2H 350 µm, =3H 500 µm) of the 

2-D model of the clearance gap and for the prescribed pressure ratios ( 0.182012 =pp , 

0.183012 =pp , 0.2012 =pp ), the numerical and experimental results show typical flow 
field structures. The flow separation area exists not only downstream from the point of the 
rapid channel area enlargement in the lower part but can be also found near the upper wall as 
a result of the intensive oblique shock wave incidence. 
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