. National Conference with International Participation
m ENGINEERING MECHANICS 2008

2008 Svratka, Czech Republic, May 12 — 15, 2008

MULTI-OBJECTIVE OPTIMIZATION OF MATERIAL PARAMETERS
FOR NANOINDENTATION MODEL

Z. Vitingerova™

Summary: Optimization of input material parameters from a nanoindentation
model is discussed in this paper. Nanoindentation allows testing physical
properties of materials in the scale of their components. Because this testing is
very expensive, it is effective to use numerical models. The target of the
optimization is to find input parameters for the model to achieve an agreement
between the numerical response and the experiment. As an optimization
algorithm, the multi-objective evolutionary algorithm PAES was used. Objective
functions are based on a difference between an optimized curve and a result from
the model. From the point of view of efficiency and accuracy, the proposed
methodology provides a promising alternative to the existing approaches.

1. Nanoindentation: the method and the model

The experimental method called nanoindentatiosn{&ek et al., 2006) allows testing the
physical properties of materials on the scale of thpical dimension of individual
components. The tested material is loaded by asteayp and rigid point (see Figs. 1 and 2).

Fig. 1. Nanoindenter.
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Fig. 1. Picture of indent from atomic force micrope.

In our case properties of the cement paste wetedteSpecimens are characterized by
a 30 mm diameter and a 4 mm height. The water-ceraga (w/c) is equal to 0.5; a Portland
cement CEMI 52.5 N is used. For indentation, Beilog indenter with pyramidal shape is
applied. The loading is cyclic and is driven byoacg in a short period of time (only several
minutes). The whole experiment consists of fivedlng and unloading periods with a small
constant force period aimed at creep developmeatFgy. 3.
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Fig. 3. Typical evaluation of indentation test: theps. time curve.

These tests are very expensive; hence it is adyaois to use numerical models instead.
The extraction of material parameters from the grpent is far from being straightforward,
because the loading imposed by the indenter int@glhighly heterogeneous stress and strain
fields. In particular, the closed-form relations available only for the simplest material
models (linear elasticity); more realistic condtite description leads to a large-scale
computational simulation based on, e.g., the FiBlEment Method. The problem then is to
find a set of material parameters for the chossordie model to achieve the best agreement
between the numerical “response” and the experiment

The numerical model was created using the ADINAvgaffe (Adina, 2005). The spatial
problem was considered as planar thanks to axisymr#n, 2005). A finite element mesh
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is decomposed into 1800 isoparametric four-nodmetds and is refined around the tip. The
indenter is ideally rigid and the contact betwewdenter and paste is updated every iteration.

A combined visco-plastic model was chosen to pigpagscribe the non-linear behavior
of the cement paste. The tensor of the total stsatomposed of three parts:

g:gE+gC+8P (1)
whereeF is time independent elastic part,

eC is time dependent creep strain and
e” is time independent plastic part.

An effective creep strain is described by the posveep law:
SC = aoo_altaz (2)

where ay, a; and a, are free model parameters. Remaining input paemetre Young's
modulus E and the yield stresgy. Input parameters bounds for the identificatioe ar
introduced in Tab. 1.

Table 1: Bounds for nanoindentation model pararaeter

Parameters |Units Minimum Maximum
E GPa 15 45

gy MPa 20 600

a - 1.32-10° |1.32.10¢
a - 0.49 2.50

a - 0.05 0.55

2. Optimization algorithm

For many optimization tasks the gradient-based austhare considered to be the most
computationally efficient algorithms. But analylicdetermination of sensitivities for the
current model is fairly difficult, mainly due thaskory dependency of the model as well as
complex interaction of individual parameters. Heneehniques of soft-computing can be
employed for optimization as an alternative toamdard approach (Hrstka et al., 2003).

Single-objective optimization

Firstly, the single-objective optimization was #&kt The methodology consists of the
minimization of the least square error functionweEsn an experiment and results from the
numerical model. The numerical model of nanoindignas very time consuming, hence it is
useful to use its approximation instead of the neadlel.

The applied methodology is based on the idea délrddsis function networks (RBFN) as
proposed e.g. in (Karakasis et al., 2004, Nakayeitral., 2004). This approach comes from
the domain of a general approximation, usuallyechthe Response Surface methods (Lee et
al., 2001), Diffuse Approximations (Ibrahimbegovat al., 2004) or Surrogate models
(Karakasis et al., 2004). RBFN is based on aréficieural networks, but has some specific
properties: the neural net is created only with layer of neurons, it has a specific type of a
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transfer function and the training of this net kead the solution of a linear system of
equations. Our particular implementation is basedhe variant introduced in (Kerova et
al., 2005).

The main principle of the approach is the replaggméan objective function by a neural
network approximation and its subsequent optimiratty an evolutionary algorithm. The
approximation is adaptively improved by new neur(pwnts), where values of an objective
function are calculated exactly. As an optimizatalgorithm, the evolutionary algorithm
GRADE with its extension called CERAF is used (Kaset al., 2004). This extension allows
solving the multi-modal problems. The main advaatafthis methodology is an inexpensive
evaluation of the approximation, which is repeataated during a stochastic optimization
process. The computationally expensive objectiviection is evaluated only when new
neurons are added to the neural network.

Two objective functions were tested. The first omswihe mean square error between the
target curve and a simulation:
2
(hexpi - hsjm,j,i J
Mo ©

wheréhe,; is the depth in thith time step on the target curve and
hsmj,i is the depth in theth time step on theth simulation.

Rjzz

t
i=1

The second objective function was based on theeréifice between “shapes” of two
curves by minimizing the errors among slopes ofgilven curves:

2
dex i _dsim,',i
D; =Z{%J ,

t
i=1 expii

(4)

where d, = m

ti _ti+l
tj is thei-th time and
ti+1) is the (+ 1)-th time.

Obtained results were satisfactory only partiatherefore, both objective functions were
used in a multi-objective manner.

Multi-objective optimization

Multi-objective optimization is based on simultansly optimizing several contradicting
goals. Therefore, the solution is found as a comgge satisfying partially all of them and the
result is usually found as a set of feasible sohgicalled Pareto set. Hence, the scalar
concept of optimality is replaced with Pareto optiity. Pareto optimal solutions present
a set, for which cannot be found any solution thakes at least one objective function better
without making any other criterion worse.

Multi-objective optimization algorithm was based an evolutionary algorithm called
Pareto Archived Evolution Strategy (PAES) (Knowktsal., 2000). PAES in the simplest
version 1+1 was used; this version works only viithividuals not with the population of
solutions. Each individual in optimization repretsea unique set of input parameters. All so
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far found Pareto optimal solutions are stored ira@ive, which represents Pareto set. From
genetic operators PAES uses only a mutation andlext®n is replaced by updating the
archive. The pseudo-code for the algorithm is deedrin Fig. 4.

1. The initial individual is created randomy and it is added
to the archive.
.A new individual is created by mnutation.
. The parent and the offspring are conpared.
3.a. The offspring is donm nated by the parent sol ution;
the offspring is rejected.
3.b. The offspring dom nates the parent solution
the parent is replaced by the offspring in the
archi ve.
3.c. The offspring and the parent are indifferent;
the offspring is added to the archive.

wWN

4. The archive is wupdated; all domnated solutions are
rej ected.

5. An individual is chosen fromthe archive for the nutation.

6. Points 2) to 5) are repeated until sonme stoping criteria

i s reached.

Fig. 4. Pseudo-code for PAES.

As was mentioned above, both previously proposegctbe functions were tested
together. All objectives were to be minimized.

Following figures show the final Pareto set aft@0 literations. We tested three different
computer generated curves as a target; thereforeawgudge not only the shape of curve
(bigger graph) but also the precision of parameséimation (smaller graph), see Figs 5 - 7.

Apparently, the shape of target curve (the blaack&uand shapes of curves from the final
Pareto set are very similar, but not all parameseesfound with satisfactory precision. The
successfulness in parameter estimation corresptmdbeir sensitivity to the objective
functions. For example, the curve | (Fig. 5) haggbr creep deformation than other curves,
and therefore final parameters are more accuratsiimation of parametersg-a, which
influence the creep strain.
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Fig. 5. Final Pareto set for curve 1.

1.6e-06 — target T T I T I T T T I T I T
1.4e-06 —
1.2e-06 —
1e-06 —
8e-07 — ! »—X target I
6e-07 [—
B 0.8
4e-07 r
B 0.6 —
2e-07
0 PR AN SR A M N T N N WY
0 100 200 300 400
02
| I |
0 E Y a0

Fig. 6. Final Pareto set for curve Il.
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Fig. 7. Final Pareto set for curve lll.

3. Conclusions

Multi-objective optimization of input material pan@ters for nanoindentation model was
presented. Multi-objective results indicate the pmsed method as very promising. The
performance and the successfulness of the optilmizabuld be increased by using PAES in
versionp+A. In that case the space of parameters will be Bedrmore thoroughly and the

final set will not be so dependent on initial saat Moreover, the adaptive probability and
mutation size will be implemented for finer seangar existing solutions.

The next problem in proposed methodology is théility to deal with the multi-modal
problem; this will be solved by an implementatidritee above-mentioned algorithm CERAF.
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