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DYNAMICAL ANALYSIS OF THE RAILWAY VEHICLE BOGIE

V. Zeman , Z. Hlava¢ , M. Byrtus”

Summary: This contribution presents a method of dynamic analysis of a railway
vehicle bogie which is based on the statistical approach. The excitation caused by
vertical track irregularities is supposed. Using the linearized model of adhesion
characteristics between wheels and rails and torque characteristics of engine, the
complete mathematical model of vehicle bogie is transformed into the frequency
domain. The dynamic response is expressed by upper limits of deformations and
forces transmitted by couplings calculated using spatial power spectral densities
of the track irregularities. The methodology is applied to a particular railway ve-
hicle bogie with two individual wheelset drives excited by track irregularities
measured along the track for left and right rails, respectively.

1. Introduction

Modern high-speed railway vehicles show some dyogshenomena characterized by fre-
guencies in the mid-frequency range, as Claus &I8én (2003) have showed. To describe
these phenomena conventional models of the vehieaesd on the basis of rigid multi-body
systems are not sufficient. The vehicle bogie b individual wheelset drives (Fig. 1) of
the electric locomotive, developed for speeds ai#fl@ kmvh by the company SKODA
TRANSPORTATION s.r.o. indicates some specific prtps. Especially, spatial vibrations
of all drive components, bogie frame and wheelsepported on visco-elastic ballast as well
as the elasticity of the hollow shafts and wheslse¢ taken into account.

The mathematical model, modal properties and #alibnditions of one individual
wheelset drive were presented in the article ai@nst Zeman et al. (2007a). This contribution
extends the methodology of modelling presentedchénhentioned paper. Here, we deal with
mathematical modelling of a complete railway vehiblogie with two individual wheelset
drives. The aim of this contribution is to presarsuitable method for dynamic analysis of the
whole bogie with two individual wheelset drives fised on excitation caused by vertical
track irregularities from the statistic point oew.

2. Description of the excitation by track irregulariti es

Numerous measurements demonstrate that track largges can be understood as stationary
stochastic processes described by power spectralitdgPSD) function (Popp & Shielen
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(b)

Fig. 1: Model of the vehicle bogie (a) and bogemnfie with secondary suspension (b)

1993). The corresponding single-sided spatial PS{F) depends on spatial frequency

F =1/ given in cycle parameterA( is a wavelength), because the track irregulasty i
function of the distance measured along the tr&ekeral track measurements have shown
that S(F ) can be approximately expressed in the log-log dioate system by piecewise

straight line (Balda, 1993) in the analytical form

S(F):S(Ej, FO(R,F..),  where K;% (1)

and S (S,,) are PSD values for spatial frequencigqF,,;) as shown in Fig. 2. Keep in
mind that the vehicle forward velocity ms™, the frequency of the wavek=vF Hz and
the spatial PSD is transformed into the standarD,R& Garg & Dukkipati (1984) have
showed. According to (1) we obtain

1 (f1)"
S(f)_\_/S(VEj . fO(fL fL). (2)

Fia log F
Fig. 2: Approximation of spatial power spectral slién
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3. Calculation of the dynamic displacements and loadfahe bogie components
Let us suppose an operational state of the railvednycle running along the straight track in
static equilibrium which is given by longitudinaleepages, of all wheels, by forward veloc-
ity v of the vehicle and by vertical wheel ford¢, . If the static equilibrium is disturbed by
vertical track irregularities, the bogie vibrateglahe vector of generalized coordinates can be
expressed as a sum of static and dynamic displademe

q(t) =a, +Aq(t), 3)

where q, satisfies the static equilibrium condition beftine disturbance. After linearization

of the creep forces and spin torque acting at timact between rails and wheels and after lin-
earization of the engine torque characteristicq@neighbourhood of the static equilibrium
state we obtain full linearized model of the bogie.

The linearized model of the bogie with 165 DOF,tien in perturbance coordinates
Aq(t) in the neighbourhood of the static equilibrium staefore the disturbance by track ir-
regularities, has the form (Zeman et al., 2007b)

MAG(t) +[B +B,, + B (S, V]Aq(t) + KAq(t) = AF (t). (4)

Mass, damping and stiffness matrices have blocgedial structure corresponding to subsys-
tems - the first individual wheelset drive (ID1lhetbogie frame (BF) linked by secondary
suspension and dampers with a half of car bodythadsecond individual wheelset drive
(ID2) - completed by matrices of couplings amongnth(see Fig. 1).The matricd,, and

B.(S,,V) express the influence of the linearized enginguercharacteristics and creep
forces between wheels and rails depending on lodigial creepages, defining the equilib-
rium state before the disturbance and on the vekiglocityv.

Let us consider that the vertical track irregulesitare expressed by deviatiofs of the

rails (see Fig. 1). The whole track structure (nallpad, sleeper and ballast) is reduced to a
single mass-spring-damper system defined by pasmet,,b;,k,, as Feldmann et al.
(2003) shows.

The excitation vectoAf (t has non-zero components on positions 51, 63, 1489, re-
spectively. They fulfill

f=md +bA +keh,,  j=1234 (5)

and correspond to vertical displacements of theelghe the general coordinate vector
Aq(t) . The model (4) is then rewritten after Fouriengfarmation into the frequency domain

{-@M +[B+B,, +B_(5.V)]+ K}Aq(®) = 24 ()A(0), ©)
where
Zo(@) = 0P my +iab, +kq )
iIs complex reduced track stiffness and

A@) =[..0,(0)...0,(0)...0,(c))...A, (). ] (8)
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is the vector of Fourier transformations of thi¢ daviations with the above mentioned non-
zero componentd ; (w .)Let us suppose a constant forward velositpf the vehicle in di-

rection of axisz;. (see Fig. 1). Then deviatiods (t) andA,(t) can be then expressed as
A (1) =8, (AL, A,(t) =A,(t-At), 9)

with the time shiftAt =1/v, wherel is the wheelbase of a bogie. Fourier transformatiof
the dynamic response and excitation are relateautfir the complex frequency response
function as follows

Ag(w) = G(w) zx (WA(w), (10)
where
G(w) ={—w2M +[B+B,, +B4(sy,V)]+ K}_1 = [gi’j (w)] (11)
is the transfer matrix function and in accordandd ¢8), (9)
A =] By (). B (@)... 0, (™ ... A (@)™ ..] . (12)
The Fourier transformation of an arbitrary dynauaigplacement is
Ag () =G, (WA (W) + G, (WA, (@) , (13)
where the corresponding frequency response furcaos

iaAtJ'

G ,1(0)) =7y (w)l_gi,Sl(w) + gi,l49(a))e

Gy, () = Zo (@G, g5(6) + G, 15 (@)™ . (14)

The vertical profile of the rails along the tracancbe understood as an ergodic Gaussian
process with zero mean values with the cross @iioel between the rail irregularitie,

and A, equate to zero.

The power spectral densities for displacemAgtscan be expressed as
2 2 .
S, (@) =S, (@G, (@) +S,, (WG, (@) ,iO<Ln>, (15)

wheren is the bogie number of DOF.

To design the bogie components, upper estimates ofdyinamic forces and torques
transmitted by couplings (gearing, clutches, suigpol engine stators to the bogie frame etc.)
can be calculated. As an illustration, the calcokatof the forces transmitted by viscous-
elastic supports of engine stator and of gear Ingusi the bogie frame (BF) is shown.

The force vectors transmitted by rubber silent-kdo8,, B;, C; in the first individual
wheelset drive can be expressed in the form

f,=Kd,+Bd,, j=A,B.C, (16)
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where K, (B, ) is diagonal stiffness (damping) matrix of onersilblock in a coordinate sys-

tem which is parallel to coordinate syst&myi, z. The vector of their translational deforma-
tions is

dj =ul+R-;—¢1_(uBF +R1j—BF BF)’ J :AuBl’Cl' (17)
Coordinates of vectorsi, and ug. express displacements of mass ceSBiref engine and

mass centr&gr of the bogie frame in directions which are pardibethe axesq, y1, zz Or Xgr,
Yer, Zsr and coordinates of the vectags and ¢, describe angle displacements around the

mentioned axes. Skew-symmetric matrides and R ;- are determined by coordinates of
elasticity centre of silent-blocks in the coordamaystenmx, y1, z (for R;) or in the coordi-
nate systemigr, Yer, Zsr (for R 5 ).

The force vectors; can be expressed as a sum of static and dynamiparents
f (1) ="f,, +Af, ), (18)
wheref; , corresponds to the bogie frame static equilibraandition
Kg, =f,

before the disturbance by track irregularities. éwding to (16) and (17) the force vector of
dynamic components can be expressed in the form

Afj (t) =K qul(t) +B qul(t) -K jBFAq BF (t) -B jBFAq BF (t)’ (19)
where
K, =K, KRT], K =|K, KR]JOR®, (20)
and
Au, (1) Au g (t)
A = , AQge (1) = - 21
40| ago} 20| agro] @

Providing that the damping of silent-blocks is pydnal to their stiffness with coefficieit
the Fourier transform of thaf (t i

Af (@) = Q+iaB)K 180, (@) =K 15 A ge (@) (22)
According to (10) and (12), the previous expressiam be rewritten into
Af (@) =95, (WA (W) + 9 (WA, (@), |=A,B,C,, (23)

where g,,(«),9;,(w) are vectors of frequency response functions. Thestors are calcu-
lated from components of the transfer matrix fumeiG (), complex reduced track stiffness
Zy(w), matricesK ; andK ., time shiftAt and coefficienf.

The power spectral densities of dynamic forcesstratied by silent-blocks have the form

S (@) =G (WS,(WG (w), [=A,B,C, (24)
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diag(S,, (@), S,, ()

F [c/m]
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lg (@) g, @]oc®?, s, (w

G (w)

where

and superscrigt denotes the transposition of conjugate matrix.
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Fig. 3 Spatial PSD of lef§; (F (Jop) and rightS;, (F )rails (bottom).



Generally, the power spectral densities dependingfrequency f =« /2n in Hertz
S, (f) and Sbi (f) of the dynamic displacemerf and forcesQ; transmitted by couplings
(gearing, clutches, viscous-elastic supports ofrengtators and of gear housings to the bogie
frame etc.) are calculated on the basis of PSDcaéntail irregularities in the form (2) and
frequency response functions of the model (4). Tpper limits of the displacements and
forces transmitted by couplings are calculated leams of static displacements and load and
corresponding standard deviations as follows

qi max = |qist| + Zqu lemax = ‘Q],O‘ +20, i !

I I (25)
where o’ :ZJ'Sqi(f)df, a5 :ZJSQj(f)df
0 0

are corresponding dispersion variances.

4. Standard deviations of dynamic displacements and opling forces of a particular
vehicle bogie

It is efficient to investigate standard deviatiaigogie components values in dependence on
operational parameters - longitudinal creepsg# the wheels and forward velocitybefore

the disturbance by track irregularities. For ausifation, further we will present the standard
deviations of the displacements and coupling formkeshe vehicle bogie shown in Fig. 1
caused by vertical track irregularities describgdspatial PSD of leftS, (F )and right

Sy, (F) rails (Fig. 3). The coordinates of the breakpowitshe piecewise straight lines ap-

proximating the mentioned PSD are introduced inl@db The values of the equivalent pa-
rameters of the track structures were considerecb@omg=38,3 kg, br=8.10" kgs®,
ke=8.10" Nm™* according to results gained from measurementeptes in the article of au-
thors Knote et al. (2003).

Tab. 1: Coordinates of breakpoints of spatial P$ieaical rail irregularities
Rail F [c/m] s [m?]
i=1 | i=2 |i=3|i=4]i=5|1i=1 |i=2]| i=3 | i=4 ] i=5

Left | 8m0®| 2m0?| 0.1 | 02 5010*| 10" | 310°| 5007 | 310"

2M10™| 10* | 3M0°| 5107 | 3M0™

Right | gm1o0® | 2mo?| 0,1 | 0,2

As an illustration, in Fig. 4 we show the frequen®sponse functionss, ,(w @and
G, ,(w) defined in (14) and the power spectral denStyw defined in (15) of the engine

stator vertical displacement in the neighbourhobdhe static equilibrium (before ground
track irregularities) for longitudinal creepagevaiue s,=0,002 of the wheels, forward veloc-
ity v=200 kmvh and vertical wheel forcesy=10° N.
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gine stator vertical displacement f&gr 0,002, v=200 km/h and No=10° N

The standard deviations,, of the engine stator and bogie frame displacenfentspera-
tional parameters,=0,002 andv=200 knvh are presented in Table 2. The standard deviations

o, of the forces transmitted by rubber silent-bloaks summarized in Table 3.

Tab. 2: Standard deviations of the engine statadsbagie frame displacements and static

displacements

Displacement Engine stator of ID1Engine stator if ID2 Bogie frame
mark units a, |qist| a, |qist| g, |qist|
u 0,987 <0,1 0,983 <0,1 0,899 <0,1
v mm 2,07 42,5 2,08 40,2 2,03 41,2
W 0,361 68,2 0,362 68,2 0,359 68,2
[ 4,90 15,9 4,89 17,9 4,88 14,6
9 10* rad 3,11 ~0 3,10 0,22 3,02 ~0
1 17,2 0,27 17,2 2,51 17,2 ~0
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The second analyzed version of the railway velioigie respects the radial static compli-
ance of the wheels. The radial-elastic wheel ctsgiE very stiff parts like the rim and the
hub and the relatively soft connection between hmdtts. Therefore, the wheel rims and
wheel hubs can be considered as rigid bodies. [Exélfe connection can be represented by
linear massles springs and dampers with the caositieky andby in radial direction. This
influence can be approximately respected, in tHecle bogie shown in Fig. 1, by means of
the equivalent rail stiffnedse and dampindpre calculated from formulas

11,1 1_1.1
Kee ke Ky bre b By
corresponding to springs and dampers connectegfiess

The static forces (moments) (fay=0,002 andv=200 knvh) and standard deviations of the
dynamic forces (moments) transmitted by choseratjels depending on vehicle forward ve-
locity v km/h for both alternatives radial-rigid and radial-elastfor ky =8.10° N/m,
bw=10"ky) wheels are presented in Tab. 3.

Tab. 3: Static forces (moments) and standard demsbf the dynamic forces (moments)
of chosen linkages of the first individual wheeldave ID1 (Fig. 1) depending on vehicle

forward velocityv knvh
Linkage Fggrces static | Radial-rigid wheels Radial-elastic wheels
10°N
Moments v=100 | v=150 | v=200| v=100| v=150 v=20(
10°Nm
Silent- | K <0,1 0,169 0,250 0,431 0,180, 0,317 0,45P
block F -14,7 0,803 1,56 2,44 0,839 0,231 2,97
Al F, -1,12 0,575 0,678 1,95 0,462 0,669 1,67
Fx <0,1 0,169 0,250 0,431 0,180, 0,317 0,45P
B F -16,6 0,671 1,27 2,01 0,704 1,88 2,46
F, -1,14 0,823 1,17 2,88 0,701 1,45 2,83
Fx <0,1 0,185 | 0,272 0,425| 0,203 0,332 0,46pR
Ci F 1,61 0,638 1,24 1,86 0,591 1,35 1,95
F, 1,88 0,241 0,399 | 0,795 0,233 0,630 0,828
disc- My 0,041 0,053 | 0,065 0,042 0,054 0,067
clutch 30,3
jaw- My 0,040 | 0,052 0,063 | 0,041 0,053 0,064
clutch
normal | N 173 208 235 86,6 103,9 118
contact
Ni4 105,5 | 147 160 168 73,8 80,1 83,9
force
force in| Fg 73,7 0,090 | 0,122 0,147 0,091 0,122 0,146
gears
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5. Conclusion

The paper presents an original method of mathealatiodelling of dynamical load of the
railway vehicle bogie components caused by vertreak irregularities. The method is based
on linearized model of the system in perturbanc&dioates with respect to operational state
of static equilibrium before running of the bogie @ track with irregularities. The upper lim-
its of the bogie component displacements and fareesmitted by couplings between bogie
components are calculated on the basis of statid snd the spatial power spectral density
functions of the vertical rail irregularities measd along the track. The method is applied to
dynamical analysis of the special bogie type with tndividual wheelset drives with hollow
shafts embracing the wheelset axles.
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