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DYNAMICAL ANALYSIS OF THE RAILWAY VEHICLE BOGIE 

V. Zeman*, Z. Hlaváč*, M. Byrtus* 

Summary: This contribution presents a method of dynamic analysis of a railway 
vehicle bogie which is based on the statistical approach. The excitation caused by 
vertical track irregularities is supposed. Using the linearized model of adhesion 
characteristics between wheels and rails and torque characteristics of engine, the 
complete mathematical model of vehicle bogie is transformed into the frequency 
domain. The dynamic response is expressed by upper limits of deformations and 
forces transmitted by couplings calculated using spatial power spectral densities 
of the track irregularities. The methodology is applied to a particular railway ve-
hicle bogie with two individual wheelset drives excited by track irregularities 
measured along the track for left and right rails, respectively. 

1. Introduction 

Modern high-speed railway vehicles show some dynamic phenomena characterized by fre-
quencies in the mid-frequency range, as Claus & Shiehlen (2003) have showed. To describe 
these phenomena conventional models of the vehicles based on the basis of rigid multi-body 
systems are not sufficient. The vehicle bogie with two individual wheelset drives (Fig. 1) of 
the electric locomotive, developed for speeds about 200 km/h by the company ŠKODA 
TRANSPORTATION s.r.o. indicates some specific properties. Especially, spatial vibrations 
of all drive components, bogie frame and wheelsets supported on visco-elastic ballast as well 
as the elasticity of the hollow shafts and wheelsets are taken into account. 

The mathematical model, modal properties and stability conditions of one individual 
wheelset drive were presented in the article of authors Zeman et al. (2007a). This contribution 
extends the methodology of modelling presented in the mentioned paper. Here, we deal with 
mathematical modelling of a complete railway vehicle bogie with two individual wheelset 
drives. The aim of this contribution is to present a suitable method for dynamic analysis of the 
whole bogie with two individual wheelset drives focused on excitation caused by vertical 
track irregularities from the statistic point of view. 

2. Description of the excitation by track irregulariti es 

Numerous measurements demonstrate that track irregularities can be understood as stationary 
stochastic processes described by power spectral density (PSD) function (Popp & Shielen 
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1993). The corresponding single-sided spatial PSD )(FS  depends on spatial frequency 
λ/1=F  given in cycle parameter (λ  is a wavelength), because the track irregularity is a 

function of the distance measured along the track. Several track measurements have shown 
that )(FS  can be approximately expressed in the log-log coordinate system by piecewise 
straight line (Balda, 1993) in the analytical form 
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and iS )( 1+iS  are PSD values for spatial frequencies iF )( 1+iF  as shown in Fig. 2. Keep in 
mind that the vehicle forward velocity v  1−ms , the frequency of the waves vFf =  Hz  and 
the spatial PSD is transformed into the standard PSD, as Garg & Dukkipati (1984) have 
showed. According to (1) we obtain 
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Fig. 2: Approximation of spatial power spectral density 

 

  

                                 (a)                                                                      (b) 

Fig. 1: Model of the vehicle bogie (a) and bogie frame with secondary suspension (b) 
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3. Calculation of the dynamic displacements and load of the bogie components 

Let us suppose an operational state of the railway vehicle running along the straight track in 
static equilibrium which is given by longitudinal creepage 0s  of all wheels, by forward veloc-

ity v  of the vehicle and by vertical wheel force 0N . If the static equilibrium is disturbed by 

vertical track irregularities, the bogie vibrates and the vector of generalized coordinates can be 
expressed as a sum of static and dynamic displacements 

 ),()( 0 tt qqq ∆+=  (3) 

where 0q  satisfies the static equilibrium condition before the disturbance. After linearization 

of the creep forces and spin torque acting at the contact between rails and wheels and after lin-
earization of the engine torque characteristics in the neighbourhood of the static equilibrium 
state we obtain full linearized model of the bogie. 

The linearized model of the bogie with 165 DOF, written in perturbance coordinates 
)(tq∆ in the neighbourhood of the static equilibrium state before the disturbance by track ir-

regularities, has the form (Zeman et al., 2007b) 

 [ ] ).()()(),()( 0 tttvst adM fqKqBBBqM ∆=∆+∆+++∆ &&&  (4) 

Mass, damping and stiffness matrices have block-diagonal structure corresponding to subsys-
tems - the first individual wheelset drive (ID1), the bogie frame (BF) linked by secondary 
suspension and dampers with a half of car body and the second individual wheelset drive 
(ID2) - completed by matrices of couplings among them (see Fig. 1).The matrices MB  and 

),( 0 vsadB  express the influence of the linearized engine torque characteristics and creep 

forces between wheels and rails depending on longitudinal creepage 0s  defining the equilib-

rium state before the disturbance and on the vehicle velocity v . 

Let us consider that the vertical track irregularities are expressed by deviations j∆  of the 

rails (see Fig. 1). The whole track structure (rail, railpad, sleeper and ballast) is reduced to a 
single mass-spring-damper system defined by parameters RRR kbm ,, , as Feldmann et al. 
(2003) shows. 

The excitation vector )(tf∆  has non-zero components on positions 51, 63, 137, 149, re-
spectively. They fulfill 

 4,3,2,1        , =∆+∆+∆= jkbmf jRjRjRj
&&&        (5) 

and correspond to vertical displacements of the wheels in the general coordinate vector 
)(tq∆ . The model (4) is then rewritten after Fourier transformation into the frequency domain  

 [ ]{ } ),()()(),( 0
2 ωωωω ∆qKBBBM RadM zvs =∆++++−  (6) 

where 

 RRRR kbimz ++−= ωωω 2)(        (7) 

is complex reduced track stiffness and 

 [ ]T
KKKKK )()()()()( 4321 ωωωωω ∆∆∆∆=∆        (8) 
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is the vector of  Fourier transformations of the rail deviations with the above mentioned non-
zero components )(ωj∆ . Let us suppose a constant forward velocity v  of the vehicle in di-

rection of axis BFz  (see Fig. 1). Then deviations )(1 t∆  and )(2 t∆  can be then expressed as 

 ),()( 41 ttt ∆−∆=∆     ),()( 32 ttt ∆−∆=∆        (9) 

with the time shift vlt /=∆ , where l  is the wheelbase of a bogie. Fourier transformations of 
the dynamic response and excitation are related through the complex frequency response 
function as follows 

 ),()()()( ωωωω ∆Gq Rz=∆  (10) 

where 

 [ ]{ } [ ])(),()( ,

1

0
2 ωωω jiadM gvs =++++−= −

KBBBMG  (11) 

is the transfer matrix function and in accordance with (8), (9) 

 [ ]Ttiti ee KKKKK
∆∆ ∆∆∆∆= ωω ωωωωω )()()()()( 1221∆ .       (12) 

The Fourier transformation of an arbitrary dynamic displacement is 

 )()()()()( 22,11, ωωωωω ∆+∆=∆ iii GGq , (13) 

where the corresponding frequency response functions are 

[ ]ti
iiRi eggzG ∆+= ωωωωω )()()()( 149,51,1, , 

 [ ]ti
iiRi eggzG ∆+= ωωωωω )()()()( 137,63,2, . (14) 

The vertical profile of the rails along the track can be understood as an ergodic Gaussian 
process with zero mean values with the cross correlation between the rail irregularities 1∆  

and 2∆  equate to zero. 

The power spectral densities for displacementsiq∆  can be expressed as 

 >∈<+= ∆∆ niGSGSS iiqi
,1,)()()()()(

2

2,

2

1, 21
ωωωωω , (15) 

where n  is the bogie number of DOF. 

To design the bogie components, upper estimates of the dynamic forces and torques 
transmitted by couplings (gearing, clutches, supports of engine stators to the bogie frame etc.) 
can be calculated. As an illustration, the calculation of the forces transmitted by viscous-
elastic supports of engine stator and of gear housing to the bogie frame (BF) is shown. 

The force vectors transmitted by rubber silent-blocks A1, B1, C1 in the first individual 
wheelset drive can be expressed in the form 

 111 ,,        , CBAjjtjtj =+= dBdKf & , (16) 
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where )( tt BK  is diagonal stiffness (damping) matrix of one silent-block in a coordinate sys-

tem which is parallel to coordinate system x1, y1, z1. The vector of their translational deforma-
tions is  

 11111 ,,        ),( CBAjBF
T
jBFBF

T
jj =+−+= ϕϕ RuRud . (17) 

Coordinates of vectors 1u  and BFu  express displacements of mass centre S1 of engine and 
mass centre SBF of the bogie frame in directions which are parallel to the axes x1, y1, z1  or xBF, 
yBF, zBF  and coordinates of the vectors 1ϕ  and BFϕ  describe angle displacements around the 

mentioned axes. Skew-symmetric matrices jR  and jBFR  are determined by coordinates of 

elasticity centre of silent-blocks in the coordinate system x1, y1, z1  (for jR ) or in the coordi-

nate system xBF, yBF, zBF  (for jBFR ).  

The force vectors jf  can be expressed as a sum of static and dynamic components 

 ),()( 0, tt jjj fff ∆+=  (18) 

where 0,jf  corresponds to the bogie frame static equilibrium condition 

 00 fKq =  

before the disturbance by track irregularities. According to (16) and (17) the force vector of 
dynamic components can be expressed in the form 

 ),()()()()( 11 ttttt BFjBFBFjBFjjj qBqKqBqKf && ∆−∆−∆+∆=∆  (19) 

where 

 [ ] [ ] ,       ,   6,3RT
jBFttjBF

T
jttj ∈== RKKKRKKK  (20) 
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Providing that the damping of silent-blocks is proportional to their stiffness with coefficient β, 
the Fourier transform of the )(tjf∆  is 

 [ ])()()i1()( 1 ωωωβω BFjBFjj qKqKf ∆−∆+=∆ . (22) 

According to (10) and (12), the previous expression can be rewritten into 

 ,,,     ),()()()()( 11122,11, CBAjjjj =∆+∆=∆ ωωωωω ggf  (23) 

where )(),( 2,1, ωω jj gg  are vectors of frequency response functions. These vectors are calcu-

lated from components of the transfer matrix function )(ωG , complex reduced track stiffness 

)(ωRz , matrices jK  and jBFK , time shift t∆  and coefficient β. 

The power spectral densities of dynamic forces transmitted by silent-blocks have the form 

 ,,,     ),()()()( 111 CBAjH
jjf j

== ∆ ωωωω GSGS  (24) 
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where  

 [ ] ))(),(diag()(    ,C)(    )()(
21

3,2
2,1, ωωωωωω ∆∆∆ =∈= SSjjj SggG   

and superscript H denotes the transposition of conjugate matrix. 

10
-3

10
-2

10
-1

10
0

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

Prostorova vykonova spektralni hustota pro nerovnost z-left

F [c/m]

S
(F

) 
[m

3 ]

10
-3

10
-2

10
-1

10
0

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

Prostorova vykonova spektralni hustota pro nerovnost z-right

F [c/m]

S
(F

) 
[m

3 ]

 

Fig. 3 Spatial PSD of left )(
1

FSD (top) and right )(
2

FSD  rails (bottom). 

 Spatial PSD of left rail 
 

Spatial PSD of right rail 

1236



 

Generally, the power spectral densities depending on frequency πω 2/=f  in Hertz 

)( fS
iq  and )( fS

jQ  of the dynamic displacement iq  and forces jQ  transmitted by couplings 

(gearing, clutches, viscous-elastic supports of engine stators and of gear housings to the bogie 
frame etc.) are calculated on the basis of PSD vertical rail irregularities in the form (2) and 
frequency response functions of the model (4). The upper limits of the displacements and 
forces transmitted by couplings are calculated by means of static displacements and load and 
corresponding standard deviations as follows 

   
∫∫
∞∞

==

+=+=
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2

0
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0,maxstmax

d)(2   ,d)(2  where

     ,2,2

ffSffS
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QQqq

Qjjqii
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σσ
  (25) 

are corresponding dispersion variances. 

4. Standard deviations of dynamic displacements and coupling forces of a particular  
vehicle bogie 

It is efficient to investigate standard deviations of bogie components values in dependence on 
operational parameters - longitudinal creepage s0 of the wheels and forward velocity v before 
the disturbance by track irregularities. For an illustration, further we will present the standard 
deviations of the displacements and coupling forces of the vehicle bogie shown in Fig. 1 
caused by vertical track irregularities described by spatial PSD of left )(

1
FSD  and right 

)(
2

FSD  rails (Fig. 3). The coordinates of the breakpoints of the piecewise straight lines ap-

proximating the mentioned PSD are introduced in Table 1. The values of the equivalent pa-
rameters of the track structures were considered to be mR=38,3 kg, bR=8.104 kgs-1, 
 kR=8.107 Nm-1 according to results gained from measurements presented in the article of au-
thors Knote et al. (2003). 

As an illustration, in Fig. 4 we show the frequency response functions )(1, ωiG  and 

)(2, ωiG  defined in (14) and the power spectral density )(ωiS  defined in (15) of the engine 

stator vertical displacement in the neighbourhood of the static equilibrium (before ground 
track irregularities) for longitudinal creepage of value s0=0,002 of the wheels, forward veloc-
ity v=200 km/h and vertical wheel forces N0=105 N. 

 

 

Tab. 1: Coordinates of breakpoints of spatial PSD of vertical rail irregularities 

Rail [ ]mcFi /  [ ]3mS i  

 1=i  2=i  3=i
 

4=i
 

5=i
 

1=i  2=i
 

3=i  4=i  5=i  

Left 3108 −⋅
 

2102 −⋅
 

0,1 0,2 1 4105 −⋅
 

410−  6103 −⋅
 

7105 −⋅
 

10103 −⋅
 

Right 3108 −⋅
 

2102 −⋅
 

0,1 0,2 1 4102 −⋅
 

410−  6103 −⋅
 

7105 −⋅
 

10103 −⋅
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Fig. 4 Frequency response functions (above) and power spectral density (below) of the en-
gine stator vertical displacement for s0=0,002, v=200 km/h and  N0=105 N 

The standard deviations 
iqσ  of the engine stator and bogie frame displacements for opera-

tional parameters s0=0,002 and v=200 km/h are presented in Table 2. The standard deviations 

iQσ  of the forces transmitted by rubber silent-blocks are summarized in Table 3. 

Tab. 2: Standard deviations of the engine stators and bogie frame displacements and static 
displacements 

Displacement Engine stator of ID1 Engine stator if ID2 Bogie frame 

mark units 
iqσ  stiq  

iqσ  stiq  
iqσ  stiq  

u  0,987 < 0,1 0,983 < 0,1 0,899 < 0,1 

v  2,07 42,5 2,08 40,2 2,03 41,2 

w  

 

mm 

0,361 68,2 0,362 68,2 0,359 68,2 

ϕ  4,90 15,9 4,89 17,9 4,88 14,6 

ϑ  3,11 ~ 0 3,10 0,22 3,02 ~ 0 

ψ  

 

10-4 rad 

17,2 0,27 17,2 2,51 17,2 ~ 0 

 

   

1238



 

The second analyzed version of the railway vehicle bogie respects the radial static compli-
ance of the wheels. The radial-elastic wheel consists of very stiff parts like the rim and the 
hub and the relatively soft connection between both parts. Therefore, the wheel rims and 
wheel hubs can be considered as rigid bodies. The flexible connection can be represented by 
linear massles springs and dampers with the coefficients kW and bW  in radial direction. This 
influence can be approximately respected, in the vehicle bogie shown in Fig. 1, by means of 
the equivalent rail stiffness kRe and damping bRe calculated from formulas 

WRWR bbbkkk

111
     ,

111

ReRe

+=+=  

corresponding to springs and dampers connected in series. 

The static forces (moments) (for s0=0,002 and v=200 km/h) and standard deviations of the 
dynamic forces (moments) transmitted by chosen linkages depending on vehicle forward ve-
locity v km/h for both alternatives radial-rigid and radial-elastic (for kW =8.107 N/m,  
bW =10-5kW) wheels are presented in Tab. 3. 

Tab. 3: Static forces (moments) and standard deviations of the dynamic forces (moments) 
of chosen linkages of the first individual wheelset drive ID1 (Fig. 1) depending on vehicle 

forward velocity v km/h 
Radial-rigid wheels Radial-elastic wheels Linkage Forces 

103 N 
Moments 
103 Nm 

static 

v=100 v=150 v=200 v=100 v=150 v=200 

Fx <0,1 0,169 0,250 0,431 0,180 0,317 0,459 

Fy -14,7 0,803 1,56 2,44 0,839 0,231 2,97 

Silent- 

block 

A1 Fz -1,12 0,575 0,678 1,95 0,462 0,669 1,67 

Fx <0,1 0,169 0,250 0,431 0,180 0,317 0,459 

Fy -16,6 0,671 1,27 2,01 0,704 1,88 2,46 

 

B1 

Fz -1,14 0,823 1,17 2,88 0,701 1,45 2,83 

Fx <0,1 0,185 0,272 0,425 0,203 0,332 0,462 

Fy 1,61 0,638 1,24 1,86 0,591 1,35 1,95 

 

C1 

Fz 1,88 0,241 0,399 0,795 0,233 0,630 0,823 

disc-
clutch 

Mx 0,041 0,053 0,065 0,042 0,054 0,067 

jaw-
clutch 

Mx 

 

30,3 
0,040 0,052 0,063 0,041 0,053 0,064 

N12 173 208 235 86,6 103,9 118 normal 
contact 

force 
N14 

 

105,5 147 160 168 73,8 80,1 83,9 

force in 
gears 

FG 73,7 0,090 0,122 0,147 0,091 0,122 0,146 
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5. Conclusion 

The paper presents an original method of mathematical modelling of dynamical load of the 
railway vehicle bogie components caused by vertical track irregularities. The method is based 
on linearized model of the system in perturbance coordinates with respect to operational state 
of static equilibrium before running of the bogie on a track with irregularities. The upper lim-
its of the bogie component displacements and forces transmitted by couplings between bogie 
components are calculated on the basis of static load and the spatial power spectral density 
functions of the vertical rail irregularities measured along the track. The method is applied to 
dynamical analysis of the special bogie type with two individual wheelset drives with hollow 
shafts embracing the wheelset axles. 
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