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SIMPLE NUMERICAL MODEL OF LAMINATED GLASS BEAMS

A. Zemanová∗, J. Zeman∗∗

Summary: The present contribution presents a simple Finite Element model aimed
at an efficient formulation of layered glass units. The adopted approach is based on
considering independent kinematics of each layer, tyied together via Lagrange mul-
tipliers. Validation and verification of the resulting model against idenpendent data
demonstrates the model accuracy, showing its potential for generalization towards
more complex problems.

1 Introduction
Laminated glass is a multilayer material produced by bonding two or more layers of glass
together with a plastic interlayer, typically made of polyvinyl butyral (PVB). The interlayer
keeps the layers of glass bonded even when broken, and its high strength prevents the glass
from breaking up into large sharp pieces. This produces a characteristic ”spider web” cracking
pattern when the impact is not powerful enough to completely pierce the glass. Multiple laminae
and thicker glass increase the strength of a structural member, too.

The most frequent approach to the analysis of glass structural elements was, for a long
time, based on empirical knowledge. Such relations are sufficient for the design of traditional
windows glasses. In modern architecture there has been a steadily growing demand on the use of
transparent materials for large external walls and roof systems in the recent decades. Therefore,
the detailed analysis of layered glass units is becoming increasingly important in order to ensure
a reliable and efficient design.

2 Methods
In general, the complex behavior of laminated glass can be considered as an intermediate state
of two limiting cases (Vallabhan et al., 1987). In the first case, the structure is treated as an
assembly of two independent glass plates without any interlayer (the lower bound on stiffness
and strength of a member), while in the second case, corresponding to the upper estimate of
strength and stiffness, the glass unit is modeled as a monolithic glass (one glass plate with
thickness equal to the total thickness of the glass plates). Both elementary cases, however, fail
to correctly capture complex interaction among individual layers, leading to non-optimal layer
thickness designs. Therefore, several alternative approaches to analysis of layered glass struc-
tures were proposed in the literature. These methods can be categorized into three basic groups:

• methods calibrated with respect to experimental measurements (Norville et al., 1998),
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• analytical approaches (Vallabhan et al., 1993; Asik, 2003; Asik and Tezcan, 2005),

• numerical models typically based on detailed Finite Element simulations (Duser et al.,
1999; Ivanov, 2006).

Applicability of analytical approaches to practical (usually large-scale) structures is far
from being straightforward. In particular, the closed-form solution of the resulting equations
is possible only for very specific boundary conditions and therefore usually have to be solved
by an appropriate numerical method anyway. Moreover, they are difficult to be generalized
to analysis of beams with multiple layers. Therefore, it appears to be advantageous to di-
rectly formulate the problem in the discretized form, typically based on the Finite Element
Method (FEM). Nevertheless, the detailed numerical modeling of the complete structure based
on two-dimensional (Ivanov, 2006) or even three-dimensional finite elements (Duser et al.,
1999) leads to unnecessary expensive calculations.

In this paper, we propose a simple FEM model inspired by a specific class of refined plate
theories (Mau, 1973; Šejnoha, 1996; Matouš et al., 1998). In this framework, each layer of
the model is treated as a Timoshenko beam with independent kinematics. Interaction between
individual layers is captured by the Lagrange multipliers (with a physical meaning of shear
stresses), which result from the conditions of inter-layer displacements compatibility. Such a
refined approach circumvents the limitation of similar models available in typical commercial
FEM systems, which use a single set of kinematic vvariables and average the mechanical re-
sponse through the thickness of the beam, e.g. (Bathe, 1996). Unlike the proposed numerical
model, the averaging operation is still too simple to correctly represent the inter-layer interac-
tions, see Section 5 for a concrete example.

3 Mechanical model of laminated beam
As illustrated by Figure 1, laminated glasses consist mostly of three layers. A local coordinate
system is attached to each layer to allow for an efficient treatment of independent kinematics.
In the following text, a quantity a expressed in a local coordinate system associated with the
i-th layer is denoted as a(i), whereas a variable without an index represents a globally defined
quantity, cf. Figure 1.

Each layer is modeled using the Timoshenko beam theory supplemented with membrane
effects. Hence, the following kinematic assumptions are adopted

• the cross sections remain planar but not necessarily perpendicular to the deformed beam
axis,

• vertical displacement does not vary along the height of the beam (when compared to the
value of the displacement).

Non-zero displacement components in each layer are parametrized as:

u(i)(x, z(i)) = u(i)(x, 0) + ϕ(i)(x)z(i),

w(i)(x, z(i)) = w(x),

where i = 1, 2, 3 and z(i) is measured in the local coordinate system from the middle plane of
the i-th layer. The inter-layer interaction is ensured via the continuity conditions specified on
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Figure 1: Kinematics of laminated beam

interfaces between layers in the form (i = 1, 2)

u(i)(x,
h(i)

2
)− u(i+1)(x,−h

(i+1)

2
) = 0. (1)

The strain field in the i-th layer follows from the strain-displacement relations

ε(i)
x (x, z(i)) =

∂u(i)

∂x
(x, z(i)) =

du(i)

dx
(x, 0) +

dϕ(i)

dx
(x)z(i),

γ(i)
xz (x) =

∂u(i)

∂z(i)
(x, z(i)) +

∂w

∂x
(x) = ϕ(i)(x) +

dw

dx
(x),

which, when combined with the constitutive equations of each layer expressed in terms of the
Young’s modulus G and the shear moduli G

σ(i)
x (x, z(i)) = E(i)ε(i)

x (x, z(i)) and τ (i)
xz (x) = G(i)γ(i)

xz (x),

yield the expression of the internal forces

N (i)
x (x) = E(i)A(i) du(i)

dx
(x, 0), A(i) = bh(i),

V (i)
z (x) = kG(i)A(i)

(
ϕ(i)(x) +

dw

dx
(x)

)
, k =

5

6
,

M (i)
y (x) = E(i)I(i) dϕ(i)

dx
(x), I(i) =

1

12
b(h(i))3,

where b and h(i) are the width and height of the beam, recall Figure 1, and k, A(i) a I(i) stand
for the shear correction factor, the cross-section area and the moment of inertia of the i-th layer,
respectively.
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To proceed, consider the weak form of the equilibrium equations, written for the i-th layer:1

L∫
0

d

dx

(
δu(i)(x)

)
E(i)A(i) d

dx

(
u(i)(x)

)
dx =

L∫
0

δu(i)(x)f̄ (i)
x (x) dx+

[
δu(x)N̄ (i)(x)

]L
0
,

L∫
0

d

dx
(δw(x)) kG(i)A(i)γ(i)(x) dx =

L∫
0

δw(x)f̄ (i)
z (x) dx+

[
δw(x)Q̄(i)(x)

]L
0
,

L∫
0

d

dx

(
δϕ(i)(x)

)
E(i)I(i) d

dx

(
ϕ(i)(x)

)
dx =

[
δϕ(i)(x)M̄ (i)(x)

]L
0
,

L∫
0

δγ(i)(x)kG(i)A(i)

[
γ(i)(x)− ϕ(i)(x)− d

dx
(w(x))

]
dx = 0.

to be satisfied for arbitrary admissible test fields δu(i), δϕ(i) and δw. Note that the continuity
conditions (1) will be introduced directly in the numerical formulation, as explained in the next
Section.

4 Finite element discretization
To keep the discretization procedure transparent, it is assumed that each layer of the laminated
beam is divided into identical number of elements, leading to the discretization scheme illus-
trated by Figure 2.
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Figure 2: Finite element discretization of the i-th layer

Following the standard conforming Finite Element machinery, e.g. (Bathe, 1996), we ex-

1In order to simplify the notation, the subscripts x and z related to internal forces and kinematics-related quan-
tities are omitted in the sequel.
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press the searched and test displacement fields at the element level in the form

u(i)
e (x) ≈ N(i)

e,u(x)r(i)e,u, δu(i)
e (x) ≈ N(i)

e,u(x)δr(i)e,u,

we(x) ≈ Ne,w(x)re,w, δwe(x) ≈ Ne,w(x)δre,w,

ϕ(i)
e (x) ≈ N(i)

e,ϕ(x)r(i)e,ϕ, δϕ(i)
e (x) ≈ N(i)

e,ϕ(x)δr(i)e,ϕ,

γ(i)
e (x) ≈ N(i)

e,γ(x)r(i)e,γ, δγ(i)
e (x) ≈ N(i)

e,γ(x)δr(i)e,γ,

where e is used to denote the element number, •e and δ•e denote a relevant searched and test
field restricted to the e-th element, N

(i)
e,• is the associated matrix of basis functions and r

(i)
e,• the

matrix of nodal unknowns. In the actual implementation, the fields u(i), we and ϕ(i)
e , as well

as the corresponding test quantities, are assumed to be piecewise linear. To obtain a locking-
free element, the shear strain γ(i)

e is assumed to be constant and is eliminated using the static
condensation.

To simplify the further treatment, we consider the following partitioning of the stiffness
matrix K and the right hand side matrix R related to the e-th element and the i-th layer:[

K
(i)
e K

(i)
ew

K
(i)
we K

(i)
w

] [
r
(i)
e

re,w

]
=

[
R

(i)
e

R
(i)
e,w

]
,

where K
(i)
ew =

(
K

(i)
we

)
T and

r(i)e =
[
u(i)
e,a, u

(i)
e,b, ϕ

(i)
e,a, ϕ

(i)
e,b

]
T, re,w = [we,a, we,b]

T.

Considering all three layers together gives the stiffness matrix
K

(1)
e 0 0 K

(1)
ew

0 K
(2)
e 0 K

(2)
ew Ee

T

0 0 K
(3)
e K

(3)
ew

K
(1)
we K

(2)
we K

(3)
we K

(1)
w + K

(2)
w + K

(3)
w 0

Ee 0 0




r
(1)
e

r
(2)
e

r
(3)
e

re,w
λ(4×1)

 =


R

(1)
e

R
(2)
e

R
(3)
e

R
(1)
e,w + R

(2)
e,w + R

(3)
e,w

0

 ,

where λ stores the nodal values of the Lagrange multipliers, associated with the compatibility
constraint (1), and the matrix

Ee =


1 0 h(1)

2
0 −1 0 h(2)

2
0 0 0 0 0

0 1 0 h(1)

2
0 −1 0 h(2)

2
0 0 0 0

0 0 0 0 1 0 h(2)

2
0 −1 0 h(3)

2
0

0 0 0 0 0 1 0 h(2)

2
0 −1 0 h(3)

2


implements the tying conditions.

5 Results and discussion
To verify and validate the performance of the present approach, the previously described FEM
model was implemented into MATLAB R© system and compared the results against predictions
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Figure 3: Three point bending setup for simply supported beam

Table 1: Material data
Glass
Young’s modulus, E 64.5 GPa
Poisson’s ratio, ν 0.23
PVB layer
Young’s modulus, E 64.5 GPa
Poisson’s ratio, ν 0.23

of an analytical model and experimental data for a three-point bending test on a simply sup-
ported laminated glass beam presented in (Asik and Tezcan, 2005) and schematically shown in
Figure 3. The width of the beam is b = 0.1 m and material data of individual components of the
layered beam are available in Table 1.

Table 2 summarizes values of the mid-span deflection for a representative load level de-
termined by both models and the corresponding experimental values. In addition to the results
obtained by an analytical method proposed by Asik and Tezcan (2005), results of the analysis
by ADINA R© system and the lower and upper bounds determined by the methods discussed
in Section 1 are included. Clearly, the results of the last three method differ substantially from
experimental data as well as the analytical results.

The proposed numerical model, on the other hand, show a response almost identical to
the analytical method, which deviate from experimental measurement by less then 6%. Such
accuracy can be considered as sufficient from the practical point of view.

Table 2: Comparison of results for a simply supported beam (load 50 N)
Model Central deflection [mm] ηexp ηan
Laminated glass beam: thickness [mm] 5/0.38/5 (glass/PVB/glass)

Experiment 1.27 - -5.2%
Analytical model 1.34 5.5% -
Numerical model 1.34 5.5% 0.0%
ADINA (Multilayered shell) 0.89 -30.2% -33.8%

Monolithic glass beam: thickness [mm] 10 (glass+glass)
Numerical model 0.99 -21.8% -25.9%

Two independent glass beams: thickness [mm] 5/5 (without any interlayer)
Numerical model 3.97 212.6% 196.2%
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To further confirm predictive capacities of the proposed numerical scheme, a response cor-
responding to an increasing load is investigated in Tables 3 and 4. Again, the method seems
to be sufficiently accurate in the investigated range of loads when considering the values of
deflections as well as values of local stresses and strains.

Table 3: Comparison of deflections for a simply supported beam
Load [N] Central deflection [mm]

wexp wan ηanexp [%] wnum ηnumexp [%] ηnuman [%]
50 1.27 1.34 5.51 1.34 5.51 0.00
100 2.55 2.69 5.49 2.68 5.10 -0.37
150 4.12 4.03 -2.18 4.02 -2.43 -0.25
200 5.57 5.38 -3.41 5.36 -3.77 -0.37

Table 4: Comparison of stresses and strains for a simply supported beam
Load [N] Maximum strain [×10−6] Maximum stress [MPa]

εan εnum ηnuman [%] σan σnum ηnuman [%]
50 112 114 1.79 7.23 7.34 1.52

100 224 228 1.79 14.45 14.68 1.59
150 336 341 1.49 21.68 22.02 1.57
200 448 455 1.56 28.9 29.36 1.59

6 Conclusions
As shown by the presented results, the proposed numerical method is well-suited for the mod-
eling of laminated beams, mainly because of its low computational cost and accurate represen-
tation of the structural member behavior. Future improvements of the model will consider large
deflections and the time-dependent response of the interlayer and will be reported separately.
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