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Summary: This paper is focused on the numerical solution of the nonlinear sys-
tem of the Euler equations, which describe the transonic flow of an inviscid fluid.
The computation was performed using the finite volume method defined for unstruc-
tured grids. Three explicit flux-vector splitting schemes (Steger-Warming, van Leer,
AUSM) are discussed. In order to improve their space accuracy, a linear recon-
struction with the Barth’s limiter, which was specially proposed for unstructured
grids, is applied. All schemes mentioned here are compared with each other for
a selected test case of transonic flow around the NACA 0012 airfoil. Further, this
paper describes an algorithm of mesh adaptation for a better capturing of shock
waves.

1. Introduction

The approximation of numerical fluxes in the finite volume method plays an important role in
the numerical simulation of transonic inviscid flows described by the Euler system of equa-
tions. Robustness of the resulting numerical schemes and their ability for a good capturing of
the shock waves are required. The flux-vector splitting class of the numerical schemes fulfils all
this requirements. These schemes have been intensively studied during the past three decades.
In 80s, the first flux-vector splitting scheme was developed. Steger and Warming (Steger, 1981)
presented a flux-vector splitting scheme for the system of Euler equations that was based on
a generalization of the upwind scheme for the scalar hyperbolic equation. Van Leer reassumed
(Leer, 1982) with the flux-vector splitting according to the normal Mach number. In 90s, Liu
and Steffen (Liou, 1993) presented the AUSM (Advection Upstream Splitting Method) flux-
vector splitting scheme. They showed that their scheme is very suitable for capturing of shock
waves and they compared it with the Roe’s scheme.
This paper deals with the numerical solution of the nonlinear system of the Euler equations,
describing the transonic inviscid flow, using the finite volume method defined for unstructured
meshes. The contents of this paper follows the previous work found in (Hajžman, 2007). A
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well-known test case of transonic flow around the NACA 0012 airfoil was selected and numer-
ically solved applying the Steger-Warming, van Leer and AUSM schemes, whose first order
space accuracy was improved to the second order by the linear reconstruction with the Barth’s
limiter. The objective of this paper is to perform a comparison of numerical results obtained
with the developed software. The main contribution of our work lies in the application of mesh
adaptation algorithm in order to be able to good capture shock waves.

2. Governing equations

The mathematical model of a compressible inviscid fluid flow is described by the nonlinear con-
servative system of the Euler equations. In the two-dimensional Cartesian coordinate system,
we can write the system of equations in the form

∂w

∂t
+

∂f(w)

∂x
+

∂g(w)

∂y
= 0, (1)

w =

⎛⎜⎜⎜⎝
ρ
ρu
ρv
ρE

⎞⎟⎟⎟⎠ , f(w) =

⎛⎜⎜⎜⎝
ρu

ρu2 + p
ρuv
ρuH

⎞⎟⎟⎟⎠ , g(w) =

⎛⎜⎜⎜⎝
ρv
ρuv

ρv2 + p
ρvH

⎞⎟⎟⎟⎠ , (2)

where w is the vector of conservative variables, f(w), g(w) are the inviscid fluxes in the x and
y directions respectively. The relation between the enthalpy and the total energy can be defined
as H = E + p/ρ. The system of equations is closed by the constitutive relation defined for an
ideal gas

p = (κ− 1)
[
ρE − 1

2
ρ

(
u2 + v2

)]
, (3)

where κ = 1.4 is the Poisson’s constant.

3. Numerical method

In this section, the discretization of the Euler equations using the cell centered finite volume
method on unstructured mesh is described. The numerical schemes based on flux-vector split-
ting techniques is used. Since the standard flux-vector splitting schemes are only first order of
accurate in space, we establish a linear reconstruction with Barth’s limiter in order to increase
the spatial accuracy to second order. For good capturing of shock wave, we present an adaptive
mesh refinement. In order to speed up the numerical solution, we use local time stepping.

3.1. Finite volume method
The computational domain Ω ∈ R2 is divided into a finite number of non-overlapping control
volumes Ωk, which satisfy

⋃N
k=1 Ωk = Ω. In this paper, control volumes with triangular shape

only are considered. Integrating every equation of the system (1) over the control volume Ωk

and using the Gauss-Ostrogradski Theorem to the approximation of fluxes we obtain the basic
semidiscrete scheme of finite volume method

dwk

dt
= − 1

|Ωk|
3∑

j=1

(fjnxj + gjnyj) |ΔΓj| = Rk(W), (4)
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Figure 1: The splitting of the flux.

where wk = 1
|Ωk|

∫
Ωk

wdxdy is an average of w on the control volume Ωk, nj = (nxj, nyj)
T is

the outward normal vector, |ΔΓj| is the edge length, |Ωk| is the volume of triangular cell Ωk ,
fj , gj are numerical fluxes. The index j corresponding with j-th edge of the triangular control
volume. WithW we denote the vector (w1,w1, . . . ,wn)T .

3.2. Approximations of numerical fluxes
In the two dimensional case, we establish a numerical flux f̂ as

f̂ = fnx + gny = Vn

⎛⎜⎜⎜⎜⎜⎜⎝
ρ

ρu

ρv

ρH

⎞⎟⎟⎟⎟⎟⎟⎠ + p

⎛⎜⎜⎜⎜⎜⎜⎝
0

nx

ny

0

⎞⎟⎟⎟⎟⎟⎟⎠ , (5)

where Vn = unx + vny is the convective velocity normal to the appropriate cell face.
The flux-splitting schemes for the systems of hyperbolic equations are generalization of the
upwind scheme for the scalar hyperbolic equations (Hirsch, 1990). The basic idea is to split the
flux f̂ into two parts f̂+ and f̂−. Then we define the flux through j-th edge of the control volume
Ωk as

f̂j = f̂+
L + f̂−R , (6)

where the indexes L, R denote the values of f̂± in the left and right control volumes, having a
common edge j. The left L and right R signification of adjacent control volumes is shown in
(Fig.1).

Before we start to describe the flux-splitting schemes mentioned above, let us introduce some
basic definitions and useful assertion. Let K = ∂ f̂(W)

∂W
be the Jacobi matrix of the flux f̂ .

Further we define λ+ = max(λ, 0) and λ− = min(λ, 0). It is obvious that λ+ + λ− = λ
and λ+ − λ− = |λ|. If Λ is a m × n matrix, then Λ+ denotes Λ+

i,j = max(Λi,j, 0), i =

1, 2, . . . , m, j = 1, 2, . . . , n. Similarly forΛ−. Since f̂ is a homogenous form of order one, the
relation f̂(w) = K(w)w is valid.
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Steger-Warming scheme
Steger and Warming (Steger, 1981) directly used the idea of upwind scheme for the scalar
hyperbolic equation. The matrixK is transformed by matrixR as

Λ = R−1KR, (7)

where the matrix Λ is diagonal with eigenvalues of K at the diagonal. Columns of matrix R
consists of eigenvectors ofK. Now we can resolve matrix Λ as

Λ = Λ+ + Λ−. (8)

A backward transformation of (8) gives

K = R(Λ+ + Λ−)R−1 = RΛ+R−1 + RΛ−R−1 = K+ + K−. (9)

Considering the homogenity of flux f̂ , we can write

f̂ = Kw = K+w + K−w = f̂+ + f̂−. (10)

This procedure leads from the system of the Euler equations to the following relation

f̂±SW =
ρ

2κ

⎛⎜⎜⎜⎜⎜⎜⎜⎝

α

αu + a(λ±2 − λ±3 )nx

αv + a(λ±2 − λ±3 )ny

αu2+v2

2
+ aVn(λ±2 − λ±3 ) + a2 (λ±2 +λ±3 )

κ−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (11)

where λ1 = Vn, λ2 = Vn + a, λ3 = Vn − a are eigenvalues of the matrixK, α = 2(κ− 1)λ±1 +

λ±2 + λ±3 , Vn = unx + vny is the normal velocity projection and a =
√

κp/ρ is the speed of
sound.

Van-Leer scheme

In the Van-Leer scheme (Leer, 1982), we split the flux according to the normal projection of the
Mach numberMn = Vn

a
= unx+vny

a
. We define the split mass flux component as

f± = ±ρa(Mn ± 1)2

4
. (12)

Then we can write for the split fluxes

f̂±V L = f±

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

u + (−Vn±2a)nx

κ

v + (−Vn±2a)ny

κ

q2−Vn

2
+ [(κ−1)Vn±2a]2

2(κ2−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (13)

where q2 = u2 + v2.
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The AUSM scheme is similar to the Van-Leer scheme. The basic difference between both
schemes comes from observations that the flux in (5) consists of two physically distinct parts:
the convective part and the pressure part. The AUSM scheme (Liou, 1993) and (Liou, 2000)
splits both parts in different manner. Let we again introduce the normal Mach number as in the
case of van Leer splitting

Mn =
Vn

a
, (14)

we can rewrite the expression (5) as

f̂ = Mn

⎛⎜⎜⎜⎜⎜⎜⎝
ρa

ρau

ρav

ρaH

⎞⎟⎟⎟⎟⎟⎟⎠ + p

⎛⎜⎜⎜⎜⎜⎜⎝
0

nx

ny

0

⎞⎟⎟⎟⎟⎟⎟⎠ . (15)

Further, we define the interface normal Mach number

ML/R = M+(MnL) +M−(MnR), (16)

whereM+,M− are the Mach number splitting functions defined as

M± =

⎧⎨⎩
1
2
(M ± |M |), if |M | > 0

±1
4
(M ± 1)2 ± 1

8
(M2 − 1)2, otherwise

. (17)

For the pressure term we define the interface pressure as

pL/R = P+(MnL) · pL + P−(MnR) · pR, (18)

where

P± =

⎧⎨⎩
1
2
(M ± |M |)/M, if |M | > 0

±1
4
(M ± 1)2(2∓M), otherwise

. (19)

Now we can write for the split part of the flux

f̂+
AUSM = M+

L/R

⎛⎜⎜⎜⎜⎜⎜⎝
ρa

ρau

ρav

ρaH

⎞⎟⎟⎟⎟⎟⎟⎠
L

+
pL/R

2

⎛⎜⎜⎜⎜⎜⎜⎝
0

nx

ny

0

⎞⎟⎟⎟⎟⎟⎟⎠ , f̂−AUSM = M−
L/R

⎛⎜⎜⎜⎜⎜⎜⎝
ρa

ρau

ρav

ρaH

⎞⎟⎟⎟⎟⎟⎟⎠
R

+
pL/R

2

⎛⎜⎜⎜⎜⎜⎜⎝
0

nx

ny

0

⎞⎟⎟⎟⎟⎟⎟⎠
(20)

AUSM scheme

3.3. Improvement of spatial accuracy
All flux-splitting schemes mentioned above are only first order accurate in space. In order to
increase the accuracy from the first order to the second order, the linear reconstruction is used.
To keep the monotonicity and thus to prevent spurious oscillations, the reconstructed values are
not allowed to exceed the maximum and minimum of neighbouring centroid values. This is
achieved by addition of the Barth’s limiter (Barth, 1989)

wkj = wk + σBarth∇wkrj, (21)
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Figure 2: Significations of neighbouring control volumes at linear reconstruction by the Barth’s
limiter.

where wkj is the reconstructed value of wk on the j-th edge, rj is the vector connecting the
center of control volume with the center of j-th edge, σBarth is the Barth’s limiter defined as

σBarth = min
j

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min
(
1, wmax−wk

∇wkrj

)
, if ∇wkrj > 0,

min
(
1, wmin−wk

∇wkrj

)
, if ∇wkrj < 0,

1, if ∇wkrj = 0,

(22)

where wmax = max(wk,w1,w2,w3), wmin = min(wk,w1,w2,w3) according to (Fig.2).

3.4. Time integration
For the time integration of (4), the explicit two stage Runge-Kutta method of the second order
of accuracy is used.

K1 = R(Wn), (23)

K2 = R(Wn + ΔtK1),

Wn+1 = Wn +
1

2
Δt(K1 + K2).

3.5. Adaptive mesh refinement
The mesh adaptation can be described in this four basic steps, see (Fig.3):

1. We have to mark those control volumes (elements) that should be divided. For the mark-
ing, we use a monitor function chosen according to the purpose of the mesh adaptation.
In this paper, we apply a monitor function designed specially for the indication of shock
waves. These elements are displayed with darker colors in (Fig.3a).

2. Every edge, which is a part of one of these chosen elements, is marked, see (Fig.3b).

3. Every element of the computational mesh has to be composed of either three, one or no
marked edges. If some element does not satisfy this condition, an additional edge of this
element is also marked. An example of this situation is showed in (Fig.3b,c).
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Figure 3: The mesh adaptation procedure.

4. Now the marked elements can be divided accordingly to these rules. For an element with
three marked edges, the mesh adaptation is performed in the form of four new elements
that originate by connecting the edge centers with each other. In the case of an element
with one marked edge, the connection of marked edge center with the vertex on the op-
posite side of the element leads to two new elements, see (Fig.3d).

Within this paper, we use the monitor function (Feistauer, 2003)

gshock
k = max

j

((ρj − ρk)vknj)
+

hkj

, (24)

where ρj is the density in the j-th neighbour’s control volume, v = (u, v)T is the velocity
vector, nj is the outward normal vector of the j-th edge and hkj is the distance between centers
of gravity of k and j neighboring control volumes. The function gshock has the higher value in
places, where the shock waves are present. The control volume will become marked if

gshock
k > ε, (25)

where ε > 0 is a given toleration.

3.6. Local time stepping
The CFL condition of stability in the control volume has the form

Δtk <
CFL

|λAk|+|λBk|
Δlk

, (26)

where λAk, λBk are the maximal eigenvalues of matrices ∂f(wk)
∂w

and ∂g(wk)
∂w

, Δlk is the diameter
of control volume Ωk.
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For the time depend computation, we must state Δt = mink(Δtk) for each control volume.
We can see that the presence of small control volumes affects very negatively the size of the
resultant time step. If we are interested only in the steady-state solution, we can set the local
time step Δtk for each control volume Ωk.

4. Numerical results

Firstly, we compare our numerical results obtained using the AUSM, Steger-Warming and van
Leer flux-vector splitting schemes with the linear reconstruction by the Barth’s limiter on the
well known test case of transonic flow around the NACA 0012 airfoil. For the application of
free stream boundary conditions, we choose the computational domain in the form of a square
region, whose proportion is twenty times larger than the airfoil chord. The NACA 0012 airfoil
is situated in the region center. At the inlet we prescribe the Mach number M∞ = 0.85 and the
angel of attack α = 1◦ following this the pressure at the outlet is computed. We discretized the
computational domain with triangular control volumes, see (Fig.4). This generated mesh was
used for all computations with the numerical schemes mentioned above. The Mach number dis-
tribution in the computational domain obtained by the application of the AUSM scheme can be
found in (Fig.5). The comparison of the Mach number along upper and lower surfaces is shown
in (Fig.6). We can see that AUSM scheme and the van Leer scheme lead to slightly higher
maximal values of the Mach number than the Steger-Warming scheme. On the other hand, the
Steger-Warming scheme was able to better catch the Zierep singularity at the lower and upper
surfaces of the airfoil. Further, we can observe some oscillations of the van Leer scheme in the
front part of the airfoil.

Figure 4: Detail of the unstructured mesh around the NACA 0012 airfoil.
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Figure 5: Distribution of the Mach number in the computational domain computed by AUSM
scheme with the linear reconstruction by the Barth’s limiter (M∞ = 0.85, α = 1◦).

Figure 6: Comparison of the Mach number distribution on the upper and lower surface of the
NACA 0012 airfoil (M∞ = 0.85, α = 1◦).
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Figure 7: Comparison of details of adapted and unadapted meshes.

Figure 8: Comparison of distribution of the Mach number for adapted and unadapted meshes
using the AUSM scheme with the linear reconstruction by the Barth’s limiter (M∞ = 0.85,
α = 1◦).
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Now we will deal with comparison of numerical solutions on the adapted and the unadapted
mesh obtained with the AUSM scheme with the linear reconstruction by the Barth’s limiter.
We consider the same geometry and the same boundary conditions that were mentioned in
the case above. (Fig.7) shows the detail of the mesh before and after the adaptation process.
We can see that the local refinement is in the place where the shock waves are present. In
(Fig.8) is comparison of the Mach number isolines in the computation domain computed using
the AUSM scheme with the linear reconstruction by the Barth’s limiter for both adapted and
unadapted mesh. (Fig.9) shows distribution of the Mach number along the upper and the lower
surfaces of the airfoil for adapted and unadapted mesh. We can see that the adaptation lead to
better catch the Zierep singularity on the upper surface and to sharper shock waves.

Figure 9: Comparison of the Mach number distribution on the upper and lower surfaces of the
NACA 0012 airfoil for adapted and unadapted meshes.

5. Conclusion

In regard to the numerical solution of transonic inviscid flow around the NACA 0012 airfoil, a
qualitative comparison of three flux-vector splitting schemes with linear reconstruction by the
Barth’s limiter was performed on triangular mesh. The obtained numerical results showed that
all presented schemes are able to capture shock waves and that they are suitable for transonic
problems on unstructured meshes. The AUSM and the van Leer schemes achieved higher values
of the maximal Mach number. On the other hand, the Steger-Warming scheme was able to
better capture the Zierep singularity. Further, a comparison of numerical results obtained with
the AUSM scheme was performed for an adapted and unadapted mesh. It is obvious that the
application of adapted mesh led to sharper shock waves and to a better capture of the Zierep
singularity.
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Within this study, we developed a software based on flux-vector splitting schemes. Due to the
user-friendly interface and the simple code written in MATLAB, the software can be used not
only for scientific purposes but also for education.
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