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Summary: An additive method enabling a direct determination of axial flow rate 
for viscous (power-law model) and viscoplastic (Vo adlo model) fluids in 
concentric annuli is presented.   Flow rate through the actual concentric annulus 
is possible to express as a sum of axial flow rates through individual partial 
concentric annuli forming the whole annulus. The resulting relation for axial flow 
rate is possible to express in analytical forms without necessity of otherwise 
complicated derivations. The only numerical calculation consists in a 
determination of location of a zero shear stress for the original whole concentric 
annulus.

1. Introduction 
Calculations of fully developed, laminar shear flows of non-Newtonian fluids through 
channels such as circular pipes and annuli are commonly needed both in the determination of 
flow conditions and deformation response and, consequently, in the design of equipment 
handling these fluids. Thorough analysis of these flow situations also serves as an important 
introductory reference step for studies of more complicated flows. 

Flow in channels mentioned above is often encountered in various industrial processes 
such as transportation of drilling fluids in petroleum industry or extrusion. 

In all these cases fluids used very often exhibit rheological behavior of visco-elasto-plastic 
type. Therefore, we restrict in the following to fluids that can be regarded (or best 
approximated) as visco-elasto-plastic. In the past various models were proven to express 
rheological properties of these fluids, each model characterizing more efficiently a special 
individual family of fluids under consideration - as e.g. polymer melts and solutions, filled 
polymers, elastomers, pastes, oils, drilling fluids, etc. 

In our contribution we concentrate on flow through annular passages challenging a series 
of hitherto unsolved problems even for isothermal, incompressible fluids. Annular flow is 
characterized by the inhomogeneous distribution of the shear stresses in the annular region in 
contrast to the homogeneous distribution in plate slot flow. Shear stresses are generated by 
- imposing pressure forces (Poiseuille flow); 
- applying drag forces (Couette flow); 
- combination of the pressure and drag forces (Couette-Poiseuille flow). 
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Each of the two forces is generally composed of two components - axial and tangential - 
depending on the action of the respective force. As no superposition principle takes place in 
Couette-Poiseuille annular flows, it is necessary to solve separately each combination of both 
Couette and Poiseuille flow. 

In addition, a difficulty in any flow calculations with viscoplastic fluids arises in the 
determination of possible plug zones in which no flow deformation occurs. For example, in 
axial annular flow with no boundary movement there is always a detached moving plug of 
unyielded fluid, provided there is any flow at all.

Couette flow is usually realized either by a torque causing the rotation of the inner or outer 
cylinder, or by a drag force applied in actual direction to the individual cylinders. Poiseuille 
flow is generated by the pumping devices supplying the fluid. In practice, usefulness of the 
solution of the individual flow arrangements is measured by ´quality´ of the relation between 
volumetric flow rate and driving forces in which rheological, geometrical, and kinematical 
parameters are involved. For some arrangements (e.g. axial pressure flow, axial pressure flow 
with axially moving inner cylinder) using simpler rheological models a few authors succeeded 
in deriving an explicit analytical relation flow rate vs. driving forces; an overwhelming 
majority of the authors obtained relations in the form of definite integrals necessitating 
numerical quadrature, or they used various computational methods (as e.g. FEM). However, 
the quality of such solutions (otherwise very ingenious) suffers from two shortcomings. 
Firstly, with arbitrary small change of any parameter it is necessary to repeat the whole 
computational procedure with respect to strong nonlinearity of the given problem, and thus 
the non-predicability of the measure of the solution change. Secondly, unlike the explicit 
analytical relations, these numerical solutions lack of direct insight into the nature of the 
problem; especially the measure of influence of individual entry parameters is not so obvious. 

The complexity of problems is further intensified for the case of eccentrically arranged 
cylinders.

The advantage of analytical approaches (if they are possible to apply) over the numerical 
methods is obvious also for the case of viscoplastic fluids. These types of flow situations 
exhibit the so-called plug regions where no flow deformation occurs. The arrangements of 
these plug flows can be determined by means of criteria derived analytically from the stress 
distribution prior to the detailed analysis of the velocity field. 

Summarizing these paragraphs there is still a lot of problems yet unsolved and challenging 
the need of continuation of basic research in this area. 

In practice these types of problems are encountered e.g. in wellbore drilling. With respect 
to demand of continuous uniform flow rate it is necessary to know flow rates through 
arbitrary annular cross sections of the whole annulus. The hint how to calculate these flow 
rates for fluid obeying the Vo adlo model (for which a power-law model forms its subcase) is 
given in the following section. 

We suppose that flow is steady, laminar, incompressible, isothermal and axial with 
negligible end effects of the inner and outer cylinders. 

2. Problem formulation 
Under the above stated assumptions the balance equation is of the form 
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and the Vo adlo model [Parzonka & Vo adlo, 1967] (written in the form useful for the 
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where P represents pressure gradient in an axial direction, R ( R) is a radius of the outer 
(inner) cylinder, 0 is a yield stress. 

As mentioned in the Introduction the problem (1)-(3) was solved for power-law fluid 
( 0=0) by Malik & Shenoy (1991), and for 0 0 by David & Filip (2003). In both cases – in 
spite of analytical forms for determination of flow rates q – there is a necessity to calculate a 
parameter  (at location R shear stress nullifies) from the corresponding integral equation. 
Knowledge of this parameter enables to determine velocity fields across the whole annulus 
(see Malik & Shenoy (1991), David & Filip (2003)). 

Using the following transformations  
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the problem (1)-(3) can be converted to the dimensionless form  

2

sgn TP    ,  (5) 

   01,1    ,  (6) 

d
d

d
dT

d
dT

ns
s

s
s

0

1

 for    0TT    ,                (7) 

0
d
d   for    0TT   (8) 

where 2 is a dimensionless constant of integration. 
If i, o denote the boundary values of the plug flow region, then from rel.(5) it follows 

that
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From here we obtain - for the case when imposed pressure gradient assists the drag of the 
inner cylinder – the velocity gradient in the form  
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and for the case when imposed pressure gradient opposes the drag of the inner cylinder 
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If we want to calculate the volumetric flow rate q1 for an arbitrary annular cross section 
( 1R1,R1) of the original annulus ( R 1R1<R1 R) – for notation see Fig.1 - it is necessary to 
realise the following 
- balance equation is the same for both annuli (arbitrary and original) 
- location of zero shear stress in dimensional form is the same, i.e. R= 1R1 1= R/R1
- boundary conditions at the inner and outer cylinders of an arbitrary annulus are possible to 

obtain from the relations (11)-(13) or (14)-(16)
- value q1 of flow rate for an arbitrary annulus is possible to calculate analytically using 

relations in Malik & Shenoy (1991) and David & Filip (2003). 
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Figure 1  Definition sketch 

3. Conclusion
The above section shows a procedure how it is possible to determine fully analytically the 
volumetric flow rate through an arbitrary annulus that forms the inner part of the original 
annulus, if we know for this original annulus a location of zero shear stress or a value of an 
integration constant 2. We suppose that fluid is of power-law or Vo adlo types. 
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