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Summary: This paper deals with the analytical solution of gaseous slip flow in
a rectangular microchannel. The flow is supposed to be steady, laminar, incom-
pressible and hydrodynamically fully developed. The velocity slip at microchannel
walls is expressed by the second-order velocity slip boundary conditions. The re-
sults derived using the Fourier method are compared with results obtained by the
authors considering the first-order velocity slip boundary conditions.

1. Introduction

Problems of flow in very narrow channels and microdevices have been studied increasingly in
recent decades. This topic plays an important role for example in biological systems and also
in a number of industrial devices such as heat exchangers, nuclear reactors or microturbines.
Depending on the value of the Knudsen number Kn, the character of microflow in such objects
can be divided into four flow regimes, (Kandlikar et al., 2006) or (Karniadakis et al., 2005).
The slip flow regime, which occurs in flows with 10−3 < Kn < 10−1, is particularly interesting
because it generally leads to analytical or semi-analytical models which allow us to calculate
velocities, flow rates or temperature distributions for laminar and fully developed microflows.
The Navier-Stokes equations remain applicable for the mathematical description of the slip flow
regime, but a velocity slip and a temperature jump have to be taken into account at the channel
walls. Let us note that the Knudsen number can be calculated either as the ratio of the molecular
mean free path λ and the hydraulic diameter Dh or as the function of the Reynolds and Mach
numbers, Kn = λ/Dh =Ma/Re

√
πγ/2, where γ is the specific heat ratio.

In order to express the velocity slip and temperature jump, the appropriate boundary condi-
tions have to be prescribed at the microchannel walls. From (Kennard, 1938) it is known that
Kundt and Wartburg in 1875 and Maxwell in 1879 were probably the first who mentioned the
velocity slip and the temperature jump at the wall. For a gas flow in the direction s parallel to
the wall, the first-order velocity slip boundary condition has the general form, (Kandlikar et al.,
2006),

uslip = us − uwall =
2− σ
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where n is the normal to the wall. The tangential momentum accommodation coefficient is
often chosen as σ = 1 and the second right-hand side term in (1) is often neglected by many
authors. The general form of the second-order slip flow boundary condition is, (Kandlikar et al.,
2006),

uslip = us − uwall = K1λ
∂us

∂n

∣∣∣
w
+K2λ

2∂
2us

∂n2

∣∣∣
w
, (2)

where K1 and K2 are constants.

There is a number of studies focused on the analytical solution of flow in microchannels of
various types. For example, in (Dongari et al., 2007), the problem of compressibility of gaseous
flow between two parallel plates is studied analytically. Numerical solution of the same prob-
lem is given in (Asako et al., 2003). Analytical solution of three-dimensional fully developed
laminar slip flow in rectangular microchannels is given in (Ebert and Sparrow, 1965), (Morini
and Spiga, 1998). Analytical determination of temperature field and Nusselt number between
two parallel plates, including axial heat transfer, temperature jump and viscous dissipation, is
studied by Ho-Eyoul Jeong and Jae-Tack Jeong in paper (Jeong and Jeong, 2006). The works
(Spiga and Morini, 1996), (Morini, 2000) are devoted to the analytical solution of temperature
field and Nusselt number computation in three-dimensional rectangular microchannels. The
flow is supposed to be steady, laminar, incompressible, fully hydrodynamically and thermally
developed. Let us note that further examples of laminar flow and heat transfer in various mi-
crochannels and microtubes are given in (Kandlikar et al., 2006).

The gaseous flow and heat transfer in the microchannel with the fist-order slip flow boundary
conditions is solved analytically by the authors of this study in (Klášterka et al., 2009). The
analytical solution of steady, laminar, incompressible and fully developed flow is derived using
the Fourier method and it is compared with numerical results obtained using the finite difference
scheme. In this study, the second-order velocity slip boundary conditions are adopted in order to
derive the analytical solution of the gaseous slip flow in the rectangular microchannel. The flow
is assumed to be steady, laminar, incompressible and hydrodynamically fully developed. The
analytical solution is derived using the Fourier method and the obtained results are compared
with results derived by the authors for the same case with first-order boundary conditions that
are presented in (Klášterka et al., 2009).

2. Mathematical formulation of the problem

Let us consider a steady laminar flow of a viscous incompressible fluid in a long microchannel
with a rectangular cross-section. The microchannel dimensions are illustrated in fig. 1, where
L = 5 ·10−3m is the microchannel length and the rectangle sides are considered as 2h = 10−6m
and 2b = 2 · 10−5m.

The incompressible fluid flow can be described by the non-linear system of the Navier-Stokes
equations, (Hoffman and Chiang, 2000). Because we suppose the fully developed flow, we can
assume ∂u/∂x = 0. Furthermore, the cross-sectional components v, w of the velocity vector
can be considered as very small compared to the longitudinal velocity u. Thus, the non-linear
system of the Navier-Stokes equations reduce to

∂2u

∂y2
+

∂2u

∂z2
=
1
η

dp

dx
, (3)
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Figure 1: Geometry of the microchannel with the rectangular cross-section

∂p

∂y
=

∂p

∂z
= 0, (4)

which means that p = p(x) and u = u(y, z). The flow is considered to be axisymmetric and
therefore, for the channel axis y = 0, z = 0, we can write the boundary conditions(

∂u

∂y

)
y=0

= 0,

(
∂u

∂z

)
z=0

= 0. (5)

In this work, the second order slip flow boundary conditions are prescribed at the microchannel
walls. Their general form can be written as the combination of first and second derivatives of
the velocity at the wall

u(h, z) = −KnDh

(
∂u

∂y

)
y=h

+K2Kn2D2h

(
∂2u

∂y2

)
y=h

, (6)

u(y, b) = −KnDh

(
∂u

∂z

)
z=b

+K2Kn2D2h

(
∂2u

∂z2

)
z=b

, (7)

where Dh is the hydraulic diameter

Dh =
4bh

b+ h
. (8)

Relating the coordinates x, y, z to Dh, the velocity u to the average velocity Uavg and the
static pressure p to the reference pressure pref = ρU2avg, we obtain the dimensionless form of
the problem. Let us note that the average velocity is defined as

Uavg =
1
bh

∫ h

0

∫ b

0
u(y, z) dz dy. (9)

From now, we will consider all the quantities as dimensionless. We can rewrite the equation (3)
in the dimensionless form

∂2u

∂y2
+

∂2u

∂z2
= Re

dp

dx
, (10)

the dimensionless form of the velocity slip boundary conditions (6), (7) is

u(h, z) = −Kn

(
∂u

∂y

)
y=h

+K2Kn2
(

∂2u

∂y2

)
y=h

, (11)
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u(y, b) = −Kn

(
∂u

∂z

)
z=b

+K2Kn2
(

∂2u

∂z2

)
z=b

(12)

and the boundary conditions expressing the symmetry remain unchanged, so the equations (5)
still hold for dimensionless quantities. In the equation (10), we consider the Reynolds number
as Re = UavgρDh/η. Values of the constant K2 in (11) and (12) are discussed in (Kandlikar
et al., 2006), in this study we choose K2 = −9/8.

3. Analytical solution of incompressible fluid flow

In this section, the analytical solution of incompressible slip flow in the microchannel is derived.
Generally, we expect the solution in the form

u(y, z) = u(1)(z) + u(2)(y, z). (13)

and after substituting (13) into (10) we get two differential equations

d2u(1)(z)
dz2

= Re
dp

dx
, (14)

∂2u2(y, z)
∂y2

+
∂2u(2)(y, z)

∂z2
= 0. (15)

We can express the general solution of equation (14) as

u(1)(z) =
Re

2
dp

dx
z2 + C1z + C2 (16)

and the solution of the equation (15) is expected to be a product of two functions f(y) and g(z)

u(2)(y, z) = f(y)g(z). (17)

Substituting (17) into (15) we get

1
f(y)

d2f(y)
dy2

= − 1
g(z)

d2g(z)
dz2

= κ2, (18)

where κ is the unknown constant. Thus, the treatment of the partial differential equation (15) is
transformed to the solution of two ordinary differential equations

d2f(y)
dy2

− κ2f(y) = 0,
d2g(z)
dz2

+ κ2g(z) = 0 (19)

generally having the solution

f(y) = A1e
κy + A2e

−κy and g(z) = B1 cos(κz) +B2 sin(κz), (20)

and therefore according to (17) we get

u(2)(y, z) =
(
A1e

κy + A2e
−κy

)
[B1 cos(κz) +B2 sin(κz)] . (21)
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Now, we can rewrite the solution (13) as

u(y, z) =
Re

2
dp

dx
z2 + C1z + C2 +

(
A1e

κy + A2e
−κy

)
[B1 cos(κz) +B2 sin(κz)] , (22)

which must satisfy the boundary conditions (5), (11) and (12). The symmetry conditions (5)
yield

C1 = 0, A1 = A2, B2 = 0. (23)

Afterwards, the solution (22) reduces to

u(y, z) =
Re

2
dp

dx
z2 + C2 + A cosh(κy) cos(κz), (24)

where A = 2A1B1. To derive the remaining constants A, C2, κ we will use the boundary
conditions (11), (12), so we get

Re

2
dp

dx
z2 + C2 + A cosh(κh) cos(κz) = −κKnA sinh(κh) cos(κz) +

+ K2AKn2κ2 cosh(κh) cos(κz), (25)

Re

2
dp

dx
b2 + C2 + A cosh(κy) cos(κb) = −Kn

[
Re

dp

dx
b− Aκ cosh(κy) sin(κb)

]
+

+ K2Kn2
[
Re

dp

dx
− Aκ2 cosh(κy) cos(κb)

]
. (26)

In order to be the equation (26) fulfilled for every y ∈ (0, h), following conditions have to be
satisfied

C2 = −Re

2
dp

dx
b2
(
1 +
2Kn

b
− 2K2Kn2

b2

)
, (27)

tan(κb) =
1 +K2Kn2κ2

Knκ
. (28)

The transcendent equation (28) has an infinite number of roots κb = κib, i = 1, . . . ,∞, and
therefore we can write the solution (24) as

u(y, z) =
Re

2
dp

dx

[
z2 − b2

(
1 +
2Kn

b
− 2K2Kn2

b2

)]
+
∞∑
i=1

Ai cosh(κiy) cos(κiz). (29)

The last step is to determine the constants Ai using (25) and (27) that result in

∞∑
i=1

Ai

[
cosh(κih)(K2Kn2κ2i − 1) − κKn sinh(κih)] cos(κiz) =

= −Re

2
dp

dx
b2
(
1 +
2Kn

b
− 2K2Kn2

b2
− z2

b2

)
. (30)

Multiplying this equation by cos(κjz)dz, where j is any given value of i, and integrating over
the interval (0, b), we get

Ai =
Re dp

dx
b

κ2i

[
− cos(κib) +

(
Knκi + 1

κib
− K2κiKn2

b

)
sin(κib)

]
[cosh(κih) +Knκi sinh(κih)−K2κ2i Kn2 cosh(κih)]

[
b
2 +

sin(2κib)
4κi

] . (31)
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4. Analytical results

Analytically obtained velocity distribution in the rectangular microchannel will be shown in
this section. The dimensionless sizes of the microchannel are considered to be h = 0.2625,
b = 5.25 and L = 2625. We consider a pressure driven flow of argon characterized by following
parameters: γ = 1.67, ρ = 1.35 kg m−3, p1 = 202650Pa, p2 = 25000Pa, η = 2.588 · 10−5 Pa s.
This results in dimensionless numbers Re = 0.015 and Kn = 0.0326.

In fig. 2, the three-dimensional profile of the dimensionless velocity u in the y-z plane is
shown. The velocity slip at the channel walls (for y = h, z = b) is easily seen from this figure.
It is no surprise that the maximum velocity is reached in the middle of the channel (for y = 0,
z = 0).

The comparison of velocity profiles obtained using the first- and second-order velocity slip
boundary conditions in given y− and z-cuts is made in fig. 3. The y-cuts are considered for
y = 0, y = h/2 and y = h. Similarly, the z-cuts are made for z = 0, z = b/2 and z = b. This
comparison shows that the velocity profiles for first- and second-order boundary conditions are
similar with small diferences in maximum values of velocity. Let us note that for K2 = 0
we obtain identical results as in the case of the application of first-order boundary conditions,
(Klášterka et al., 2009).

5. Conclusion

This article deals with the analytical solution of gaseous flow in the microchannel with rect-
angular cross-section. The flow is assumed to be steady, laminar, incompressible and fully
developed. The velocity distribution is derived analytically using the Fourier method. The main

Figure 2: Profile of the dimensionless velocity in the y − z plane.
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Figure 3: Dimensionless velocity profiles obtained analytically using first- and second-order
slip boundary conditions.

objective of this study is the application of second-order slip flow boundary conditions at the mi-
crochannel walls. Comparison of the results valid for the second-order slip boundary conditions
with the solution for the first-order boundary conditions presented by the authors in (Klášterka
et al., 2009) shows the similarity and only small differences between both analytical solutions.
The solutions with first- and second-order velocity slip boundary conditions are identical when
considering K2 = 0.

In future works, authors want to continue in the analysis of microflow effects. Particularly,
the analytical solution of laminar incompressible flow in the inlet part of the rectangular mi-
crochannel using the Oseen flow model will be derived and the second-order temperature jump
boundary conditions will be analyzed.
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