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COMPARISON OF NUMERICALLY SIMULATED PRESSURE ON THE 
SURFACE OF A FLUTTERING PROFILE WITH EXPERIMENT IN 

WIND TUNNEL 

J. Horá ek*, P. Svá ek**, V. Vl ek*, M. Feistauer***

Summary: The paper compares original experimental results with numerical 
solution of a 2D aeroelastic problem. The incompressible turbulent flow over a 
freely vibrating airfoil, with two degrees of freedom for rotation and translation 
with large vibration amplitudes, is described by the Reynolds averaged Navier-
Stokes (RANS) equations written in Arbitrary Lagrangian-Eulerian (ALE) form. 
The Spalart-Allmaras turbulence model is used. The flow is solved by the 
stabilized finite element method. The numerical results are compared with the 
optical measurements of flow field around a fluttering double circular arc (DCA) 
18% profile elastically supported in a subsonic wind tunnel. The interferometry 
method was used for airflow visualization in different phases of the profile 
motion. The numerical results for the pressure on the profile surface are in good 
agreement with the measurement. 

1. Introduction 
In many technical disciplines the interaction of fluid flow and a vibrating structure plays an 
important role, see, e.g., Dowell (1995). During last years, significant advances have been 
made in the development of computational methods for simulation of the fluid-structure 
interaction, see, e.g., Bathe (2007). In the present study the main attention is paid to the 
comparison of numerical simulations of self-sustained vibrations of a profile in turbulent 
incompressible flow with the experimental results. The mathematical analysis consists of the 
fluid flow 2D model in interaction with a flexibly supported profile, which can vibrate 
vertically and rotate around its elastic axis.

The numerical solution of RANS equations is carried out with the use of the finite element 
method (FEM) for the spatial discretization of the problem. The finite elements for velocity 
and pressure were selected to satisfy the Babuška-Brezzi condition in order to guarantee the 
stability of the scheme. The stabilization based on GLS (Galerkin Least-Squares) method 
together with div-div stabilization was employed in order to suppress the appearance of 
spurious oscillations due to very high Reynolds numbers. The choice of the stabilization 
parameters is based on the numerical analysis of the problem as well as the numerical 
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experience, see Svá ek et al. (2007) and Lube (1994). The Spalart-Allmaras turbulence model 
is approximated by the FEM stabilized by the streamline upwind/Petrov-Galerkin (SUPG) 
method. 

The original measurement was performed in a wind tunnel for the airflow velocity higher 
than the critical flow velocity for loss of the profile stability by flutter, thus the vibration 
amplitudes were large, see Vl ek et al. (2008). The images of the flow field were recorded for 
prescribed phase delays during one oscillation period of the profile from which the pressure 
on the vibrating surface was evaluated at given time instants. 

2. Mathematical fluid flow model
The character of the flow depends on the magnitude of the Reynolds number. For a 
sufficiently small Reynolds number the flow is laminar but with increasing Reynolds numbers 
it becomes turbulent. The turbulent incompressible flow can be modelled by the Reynolds 
Averaged Navier-Stokes (RANS) equations 
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where 1 2,V VV  is the mean value of the fluid velocity,  is the kinematic fluid viscosity,
P is the mean value of the kinematic pressure (i.e., pressure p divided by the fluid density ),
the terms ijR  are the Reynolds stresses expressed in the form 
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and T  is a turbulent viscosity.  
The value of T  can be either obtained by the solution of one or more partial differential 

equations for additional quantities – see Wilcox (1993).  

In order to numerically simulate aeroelastic problems for large vibration amplitudes the 
ALE formulation of Reynolds equations and of the turbulence model needs to be introduced. 
Following the notation in Dubcová et al. (2008), we can rewrite the Reynolds Averaged 
Navier-Stokes equations in the ALE form as 
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where
tD

Dt

A

 denotes the ALE derivative and gw  is the domain velocity. System (3) is 

considered in a time-dependent domain t . The symbol At denotes a regular one-to-one 
Arbitrary Lagrangian-Eulerian (ALE) mapping of the reference configuration 0 onto the 
current configuration t for any time instant 0,t T  - see Nomura & Hughes (1992).  
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The system of equations (3) is equipped with suitable boundary and initial conditions (see 
Fig.1). On the moving part of boundary (airfoil surface Wt) the kinematic boundary condition 
is prescribed, i.e. V = wg on Wt. At the inlet and on the fixed impermeable channel walls D
the Dirichlet conditions V = VD are considered and at the outlet the condition:
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where 1 2( , )n nn  is the unit normal to the boundary t  of the domain t , O is the outlet 
and Pref denotes a prescribed reference outlet pressure. The initial condition 

0 00x, x , xV V  is considered. 
The turbulent viscosity is determined with the aid of the Spalart-Allmaras turbulence 

model. It can be written in the ALE form (see Wilcox,1993): 
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for an additional quantity  and equipped with the boundary condition =0 on Wt and 
0n  on 

O D .

D

D

D

Wt O

t

Figure 1 Scheme of the computational region around the vibrating airfoil in the channel. 

The turbulent viscosity T  is defined as
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The functions G  and Y  are functions of the tensor of rotation of the mean velocity and 
depend on the wall distance y :
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The following choice of constants is used: 

1
0.1355bc ,

2
0.622bc , 2 3 , 7.1c ,

2
0.3wc ,   

3
2.0wc ,    0.41 ,

1 1 2

2/ 1 /w b bc c c .   (8)

3. Structural model
The profile can vertically vibrate with the displacement h(t) and rotate around the elastic 

axis EA with the rotation angle ( )t . Fig. 2 shows the elastic support of the profile on 
translational and rotational springs with a bending stiffness kh and torsion stiffness k . The 
pressure and viscous forces acting onto the vibrating profile immersed in the flow result in the 
aerodynamic lift force L(t), the torsional moment M(t) the drag force D(t) defined by 
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By ij  we denote the components of the stress tensor, ij  denotes the Kronecker symbol, 

1 2,n nn  is the unit outer normal to t  on Wt  (pointing into the profile) and 

EA EA1 EA2,x x x  is the position of the elastic axis EA. Relations (8) and (9) define the 
coupling of the fluid model with the structural model.  

T
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h

kL t( )
M t( )

U0

Figure 2 Scheme of the elastic support of the airfoil on translational and rotational springs. 

Engineering Mechanics 2009, Svratka, Czech Republic, May 11 – 14

416



5

4. Numerical approximation of the flow problem 
In order to solve the problem numerically, we start from the time discretization of the flow 
model. The ALE derivative is approximated by a two step backward difference formula. The 
problem discretized in time is solved by the finite element method. The construction of the 
finite element space is based on a triangulation of a polygonal approximation  of the 
computational domain t  at time t.
 In the finite element solution of incompressible Navier-Stokes equations several 
important obstacles need to be overcome. First, it is necessary to take into account that the 
finite element velocity/pressure pair has to be suitably chosen in order to satisfy the Babuška-
Breezi condition, which guarantees the stability of the scheme – see, e.g., Girault and Raviart 
(1986). In practical computations, the finite element spaces are defined over a triangulation 
K , formed by a finite number of closed triangles K . In our computations, the well-
known Taylor-Hood P2/P1 conforming elements are used for the velocity/pressure 
approximation. This means that the finite element approximation of the pressure p  is a 
piecewise linear function and the approximation of the velocity v  is a piecewise quadratic 
vector-valued function.
 The standard Galerkin discretization may produce approximate solutions suffering 
from spurious oscillations for high Reynolds numbers. In order to avoid this drawback, the 
stabilization via streamline-diffusion/Petrov-Galerkin technique is applied, see, e.g., Gelhard 
et al. (2005), Svá ek et al. (2007). Moreover, it is necessary to design carefully the 
computational mesh, using adaptive grid refinement in order to allow an accurate resolution 
of time oscillating thin boundary layers, wakes and vortices. We use the anisotropic mesh 
adaptation technique by Dolejší (2001) for the construction and adaptive refinement of the 
mesh. 
 The nonlinear Spalart-Allmaras equation (5) is discretized by piecewise linear 
elements. In order to guarantee the positivity of the function  needs to preserve, the 
SUPG/GLS stabilization applied as in Svá ek et al. (2007). However, the use of SUPG/GLS 
stabilization still does not avoid local oscillations near sharp layers, which can lead to 
pathological situations with negative viscosity. In order to solve this problem, the additional 
artificial viscosity stabilizing procedure based on crosswind diffusion is introduced, cf. 
Codina (1993). 

5. Measurement set - up 
For simultaneous measurement of the periodic profile vibrations and the optical measurement 
of unsteady high speed airflow, a method of phase shift was used. The measurement of flow 
fields in selected phases of the oscillation period was carried out. An arbitrary periodic 
quantity is possible to choose for controlling the image record triggering in a given phase. The 
pulse source of the light and the digital camera was synchronized with the selected phase of 
the vertical position of the profile. Using this method, the relations among the unsteady flow 
field, the profile motion and the aerodynamic forces loading the vibrating body can be 
determined in selected phases of the periodic motion. 

Vacuum subsonic wind tunnel was used for the experiments, see Fig.3. The double circular 
arc (DCA) 18% profile with the chord length b=120 mm and thickness 21.6 mm was 
elastically supported in the test section of the wind tunnel. The test section was 80 mm wide 
and 210 mm high. Centre of rotation (EA) of the profile was at 1/3 of the chord behind the 
leading edge, for more details on the measurement see Vl ek et al. (2008). 
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Experimentally established eigenfrequencies f1 and f2 and damping of the system for zero 
airflow velocity are presented in Table I. By increasing the velocity both frequencies 
converge to the flutter frequency 20.4 Hz at the critical velocity at about Mach number 
M=0.38 (Reynolds number Re=1.04 x 106). Above this velocity, the system became unstable 
by flutter with a rapid increase of vibration amplitudes and the self-excited motion of the 
profile in a limit cycle oscillation.  

Mode
No

Natural
frequency

Damping 
ratio

Mode
shape

1 18.38 [Hz] 3.22 [%] translation 
2 38.13 [Hz] 0.96 [%] torsion 
3 146.9 [Hz] 0.72 [%]  parasitic 

Table I Dynamic characteristics of the model. 

6. Flow measurement by interferometry method 
The flow field in the vicinity of the profile was measured by interferometry method at the 
inflow velocity M=0.38, which is slightly above the flutter stability of the profile. The 
vibration amplitudes were relatively large, up to about 6 mm of the peak-to-peak values for 
vertical translation h and 9 degrees for peak-to-peak values of the rotation angle  around the 
elastic axis. Individual phases of one oscillation cycle are documented in Fig. 4 at the 16th

time instants. Exposition of each photograph was performed with the time delay 
approximately of 4 s. This time was required for the recharging of electrical condensers of the 
flash apparatus.
 Translational and rotational displacements of the profile evaluated from the photos in 
Fig. 4 taken in the selected 16th phases 0, 2  during one cycle of the self-oscillations are 
shown in Fig. 5. It can be concluded that the rotation and translation of the profile were nearly 
in phase. However, the system behavior was asymmetric, the downward vertical displacement 
and negative (counterclockwise) direction of the rotation prevailed. The reason for it can be in 

(a) (b)

Figure 3 (a) Wind tunnel with Mach-Zehnder interferometer, (b) test section with the DCA 
profile.
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a small asymmetry of the profile construction including an asymmetry in the profile 
installation in the wind tunnel test section. 

Figure 4 Interferograms (No 925-940) of the flow field around vibrating DCA profile for one 
period of the self-oscillations after the lost of stability by flutter in 16th motion phases .
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Figure 5 Angle of attack and vertical translation of the profile during one period of the self-
excited airfoil motion in 16th motion phases 0,2 .
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7. Results and discussion 
The pressure on the moving profile surface was numerically simulated for the prescribed 
airfoil motion given by the attack angle  and vertical translation h of the elastic axis (see 
Fig. 6) corresponding to the measured self-vibration regime in Fig. 5. The oscillation 
frequency was 20.4 Hz, the angle  varied from -6o to + 3o and the translation h from –4 mm 
to +2 mm. The oncoming airflow velocity U0=130 m/s, air density 1.225  kg/m3,
kinematic viscosity =1.5 x 10-5 m/s2 and the total pressure in the oncoming flow p0=9 761.8 
Pa (approximately equal to the atmospheric pressure) were considered in the numerical 
computations. 
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Figure 6 Prescribed periodic vibrations of the profile by angle of attack  (dashed line) and 
vertical translation h (full line) following the measured self-excited airfoil motion.

The pressure was evaluated from the interferograms using the method of infinite-
fringe mode and assuming isentropic flow. The accuracy of the pressure evaluation was 
decreased by a small depth of the measurement test section (80 mm) in the wind tunnel, and 
therefore only 18.3 fringes covered the whole range of the subsonic airflows velocities. 
Moreover, a substantial part of field of view of the width 30 mm (i.e. ¼ of the profile chord) 
was hidden behind a supporting strap flexibly fixing the airfoil in the measurement section. 
An interpolation of the interferometry fringes, partly hidden in the non-visible region of the 
flow field covered by the metal strap carrying the profile, was problematic. From this reason, 
only midpoints of the black and white fringes were used for calculation of the pressure on the 
airfoil surface. In this way one interference fringe (i.e., one pair of the white and black fringe) 
corresponded to the change of the airflow velocity about 15 m/s (i.e., the change in the Mach 
number about 0.05). In the leading edge of the profile it was also difficult to evaluate the 
pressure with a better accuracy, because of the fringes in this part of the profile have a very 
high density and the fringes are not clearly distinguishable one from the other. 

The dimensionless pressure 0p p  computed on the profile upper and lower surfaces 
in the 16th phases of one vibration period is presented in Fig. 7 together with the pressures 
evaluated from the interferograms No 925–940 presented in Fig. 4. 
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Figure 7 Pressure on the vibrating airfoil during one period: a/ experiment on upper 
( and lower ( ) surfaces, b) computed - upper (full line) and lower (dashed line) surfaces. 
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Figure 7 – continued. (The numbers 925–940 correspond to the interferograms in Fig. 4.) 
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For the negative attack angles ( 0 – see the interferograms No 926–933) and the 
leading part of the profile ( / 0.5x b ) the pressure has higher values on the upper profile 
surface than on the lower surface. It is changed in the trailing part of the profile ( / 0.5x b ),
where the higher pressure is on the lower surface. 

For higher negative angles of attack ( 0), especially for the interferograms No 
929–930, the graphs for the pressure computed on the lower side of the profile at the nose 
near the distance / 0.05x b  from the very sharp leading edge are not smooth due to a local 
flow separation. For the positive angles of attack ( >0 see the interferograms No 935–939) no 
flow separation region is possible to detect in the computed pressures, and the scheme of the 
pressure interchanges along the upper and lower surfaces is opposite in comparison to the 
cases 0 mentioned above. Near an equilibrium profile position ( 0  - see the 
interferograms No 925 and 940) the pressure on the upper and lower surfaces is 
approximately the same. In general, the higher flow velocity outside the boundary layer is 
associated with the smaller pressure on the surface of the profile. At the trailing edge of the 
profile the computed pressure is usually higher than the pressure evaluated from the 
interferograms.  

Taking into account the above-mentioned problems with the evaluation of the 
interferograms, the agreement of the computed and measured pressure on the profile is good.
 Fig. 8 shows the comparison of the computed lift force L given by integration of the 
pressure around the profile surface with the lift force evaluated from the experimentally 
obtained pressure distribution along the upper and lower surfaces of the profile. 
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Figure 8 Resulting measured and computed (full line) aerodynamic lift force L loading the 
profile during one period of the self-excited airfoil motion.

8. Conclusions
Aeroelastic model with a double arc circle profile was investigated in wind tunnel in the 

regime of flutter instability at the Mach number M=0.38. Interferometry was used for 
visualization of the airflow around the vibrating profile during the whole oscillation cycle, 
which was divided into 16 phases. From the interferograms, the pressure distribution on the 
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profile was determined. The accuracy of the evaluation was decreased due to the necessity of 
extrapolation of interferometry fringes in the part of the test section, where the flow field was 
shielded by the support construction of the model, and where the flow field was not visible. 
The method developed for the numerical simulation of airfoil aeroelastic behaviour in 
turbulent flow was successfully validated by experimental data for prescribed airfoil vibration 
for flow velocities above the instability threshold for flutter. 
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