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Summary: The reliability of concrete structure is immediately connected with the 
damage development in the material. The expression of the ascending and 
descending branches of the stress-strain diagram with the damage cumulation 
function offers an insight into the progress of damage. It is favourable to 
approximate the damage cumulation function with the probability distribution 
functions. The Weibull, gamma and log-normal distributions seem to be 
convenient. While in the graphical form the damage density is very illustrative, in 
the numerical form the characteristics of the position and variability of the 
probabilistic distribution could be used with advantage.

1. Introduction
The process of damage is immanent to our existence. We are exposed to it and likewise our 
environment. We expect its occurrence and calculate with its presence. We are searching for 
its extend and are interested in the resistance against it. From this point of view it is logical, if 
the analytical model of behaviour of the subject of our interest will be expressed by the 
damage characteristic. Mechanical material properties are such a subject, which attract 
attention of engineers and stimulate investigation and progress of knowledge. Within the set 
of materials, concrete is the one, which is still the matter of interrogation, due to its 
heterogeneity and the dependence on various influences during the production and service. 

Load level belongs among the parameters significantly influencing the progress of damage. 
Miscellaneous time dependent force redistributions and cracking of different scale inside and 
between the concrete components are growing during loading. The stress-strain diagram is an 
illustrative expression of what could be expected from the material. The first task is to try to 
express it by the characteristic of damage, the second one is to find a simple parameter for the 
sake of comparison. A set of straightforward coefficients could help sometimes to identify 
materials with unsuitable properties for the intended purpose. The use of damage cumulation 
function for the expression of the stress-strain diagram is discussed below. The characteristics 
of the position and variability of the probabilistic distribution are tested for the comparison of 
the state of damage.  

2. Stress-strain diagram expressed by damage cumulation function 
There are various ways to construct the stress-strain diagram. Apart from the different force 
action the stress-strain diagram could be obtained from tests at the stress rate controlled (soft) 
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testing procedure and strain rate controlled (stiff) testing procedure. The first mode of test is 
characteristic e.g. for common loading by hydraulic jacks – only the ascending branch up to 
the failure could be registered. However the descending branch of the stress-strain diagram is 
exceptionally important, hence the necessity of stiff testing (constant velocity of deformation 
increase – in post-peak region achieved by force reduction). An example of the stress-strain 
diagram for tension element with both the ascending and descending branch is in Fig. 1. The 
onset of damage at the increasing loading is signalized by the deviation of the curve from its 
tangent AC crossing its origin. The determination of arising of microcracks is important for 
the evaluation of the action of material at sustained or repeated loading. It couldn’t be omitted 
also the importance of the rate of load or strain increase on the shape of the diagram.   

Each point (F) on the stress-strain diagram (Fig. 1) for the monotonously growing 
deformation (Hájek and Komloš, 1984) given by strain and stress coordinates defines the 
secant modulus of elasticity Esec which is equal to tg sec. The initial tangent modulus of 
elasticity E0 at the strain  = 0 is given by tg 0. It is obvious, that the concrete state 
deterioration is indicated by the decrease of Esec. Helpful could be the comparison of triangles 
ABC and ABD (D is the intersection point of the abscissa AF with BC) in Fig. 1. AC is the 
tangent in the initial point A of the stress-strain diagram and BC is the parallel with the stress 
axis crossing the strain axis in the arbitrary point B. Let the distance BC is equal to 1. 
Important here is the distance BD, which could be derived from both triangles having the 
same leg AB 

(1)

For given assumptions BD is equal to the ratio of secant and initial moduli – it is practical 
to denote it as . The point on the stress-strain diagram (by introducing Esec from Eq. 1) is 
given by the equation 

(2)
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Fig. 1 Stress-strain diagram and damage cumulation function according to 
(Hájek & Komloš, 1984)
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The axial force N acting on the area of the cross section A could be expressed from (Eq. 2) 
as

(3)

To explain (Eq. 3) the material model according to (Heilmann, 1976) could be used. The 
cross-section is composed of parallel fibres with constant modulus of elasticity E0, different 
strength and with linear stress-strain dependence up to the failure. It means that at the force N
part of the fibres is already damaged (we can denote it as ), only the area A is still acting. 
From the definition it follows for the sum of the acting part of the cross-section ( ) and of the 
damaged part ( )

(4)
We can plot the parameter (= BD) in Fig. 1 in the position . By this way we receive the 

whole curve starting with the value equal to 1 (= BC) for  = 0 and approaching 0 for higher 
strains. The complement to 1 is creating the curve of the parameter , which is considered in 
(Hájek & Komloš, 1984) as the damage cumulation function of the cross section. At intact 
material  = 0 and at fully damaged material  = 1. Introducing (Eq. 4) into (Eq. 2) we 
receive the expression of the stress-strain diagram by the use of the damage characteristic. 

3. The expressions of damage cumulation function 
It is the endeavour to express the damage cumulation function as simple as possible at 
contemporary sufficient accuracy. At first sight it is apparent its similarity in shape as well as 
in the nature with the cumulative (probability) distribution functions known from the theory 
of probability. Hájek & Komloš (1984) chose for the expression of damage cumulation of 
concrete in axial tension the three-parameter Weibull distribution (Wikipedia) in the form 

(5)

where 0 is the threshold of damage,  the shape parameter,  the scale parameter and  the 
relative deformation as the independent variable. Its complementary cumulative distribution 
function (in our case of ) is a stretched exponential.

As a first step of the damage cumulation function determination it is preferable to separate 
0. One of the best ways to observe the progress of damage is the exploration of the volume 

deformations. The origin of microcracks is identified by the deviation of the curve from the 
straight line. The turn from the decrease to increase of the volume at higher load levels is a 
signal of advanced stage of destruction. The disadvantage is the need of strain measurements 
in three mutually perpendicular axes, what is not made usually. Another procedure was used 
by (Hájek & Komloš, 1984). Best-fit regression lines through two, three or four experimental 
points of the stress-strain diagram were calculated successively (in Fig. 2a for four points) and 
their intersections with the vertical ( ) axis were determined. The position of the damage 
starting could be located in Fig. 2b from the course of magnitudes (a0) plotted for the average 
strain in the specific regression.
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At the use of Weibull distribution it is supposed, that no damage occurs up to 0.
Experimental values of are derived from experimental values of the stress-strain diagram 
according to Fig. 1 (Eq. 1 and Eq. 4) – the initial modulus of elasticity is calculated from the 
slope (linear approximation) of the stress-strain diagram up to 0. The shape ( ) and scale ( )
parameters are derived then from the least squares of the difference of experimental and 
calculated (Eq. 5 or Excel function) values of (only points above the damage threshold are 
included). The plot of experimental (Hájek & Komloš, 1984) and calculated damage 
cumulation functions for concrete in tension is in Fig. 3. Very illustrative in the theory of 
probability is the derivation of the cumulative distribution function known as probability 
density function (for continuous random variables). If it is used for damage cumulation it is 
called as damage density (Hájek & Komloš, 1984). As can be seen in Fig. 4, its course 
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Fig. 2a  Best-fit regression lines through four experimental points of the stress-
strain diagram – a0 determination (Hájek & Komloš, 1984). 
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Fig. 2b  Threshold of damage determination (Hájek & Komloš, 1984). 
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identifies the regions of strain where the damage activities are concentrated. However if we 
are interested in the amount of damage related to the acting part of the cross section – 
(remaining fibres), we can use the damage intensity ( ), defined in (Hájek & Komloš, 1984) 
as the ratio of damage density ( ) and 

(6)

Though the damage density decreases at higher strains, the damage intensity is still 
increasing (Fig. 4).
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Fig. 3  Damage cumulation function 
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541



Having the and parameters from the approximation we can introduce Eq. 5 into Eq. 4 
and Eq. 2 receiving the expression for the theoretical course of the stress-strain diagram, as 
depicted in Fig. 5. By use of the Weibull distribution the part up to 0 (= 0.07 ‰) is created by 

the straight line with the initial modulus of elasticity (derived from the slope of experimental 
values up 0). Satisfactory fitting of experimental measurements could be observed.   

Two other probability distributions seem to be appropriate for the expression of the 
damage cumulation function – the gamma distribution and the log-normal distribution. They 
are defined by the probability density functions 

(7)

(8)

Both relationships are three-parameter. The parameters are 0, , , u (mean value) and u
(standard deviation of the function u = ln| - 0|). ( ) is the gamma function. The cumulative 
distribution functions of both distributions are defined as an integral of density functions. 
With regard to the fact, that the modern programs have already built-in distribution functions, 
this does not present a problem at the approximation. Another way of approximation is to 
vary all three parameters, the condition is that only experimental values with > 0 are taken 
into consideration at the partial step. As can be seen in Figs. 3 and 4 the course of the damage 
cumulation function, so as of the damage density and damage intensity is starting from values 
of 0 different from that calculated for the Weibull distribution. The experimental 
measurements of the stress-strain diagram (Fig. 5) are satisfactorily fitted by all three curves.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 50 100 150 200 250 300

 ( S)

  (
M

Pa
)

  experim
  Weibull
  gama
  log-norm

Fig. 5 Stress-strain diagram for measurements according to (Hájek & Komloš, 1984). 
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The graphical presentation of the damage density function is very illustrative. For the sake 
of comparison it will be desirable to characterize each distribution by numerical parameters of 
the position and variability. The task is therefore to find the relationship between the 
parameters of the probability equations and the mean value, the standard deviation and the 
skewness. In the following the expressions for the gamma distribution (Mrázik, 1987) are 
presented.

If f( ) is the probability density function according to Eq. (7), the first moment about the 
threshold value 0 could be written as 

(9)

Taking into consideration the definition of the gamma function and the relationship 
between ( +1) and ( ) we receive that 

(10)

what is the distance of the mean from the threshold value 0. The distance from zero is then 

(11)

Similarly could be written for the second and the third moment about the threshold value 0

(12)

(13)

The second and the third central moments can be expressed by moments about 0. Using 
Eq. (10) and (12) we receive for the standard deviation 

(14)

The skewness, defined as the ratio of the third central moment and the third power of the 
standard deviation, could be written by use of Eq. (10), (12) and (13) in the form 

(15)

If we apply Eqs. (11), (14) and (15) to the approximation of results presented in (Hájek & 
Komloš, 1984) with the gamma cumulative distribution function we receive for the mean 
value, the standard deviation and the skewness the values 161.59, 52.35 and 0.757 
respectively. Using the analogous expressions for log-normal distribution (Wikipedia) the 
corresponding values will be 163.65, 56.26 and 1.254. Though the differences, especially at 
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543



the first two parameters, are not significant, the use of one distribution at the given 
comparison will undoubtedly lead to the enhancement of the accuracy. 

More intricated models were developed (Li & Li, 2001), taking into account the 
contribution of fibres and their debonding and slip. The question of damage cumulation is 
highly actual also when dealing with masonry structures of inferior quality (Bažant & Strnad, 
2008) or subjected to the action of fire (Bellová, 2008), so as by the repair of structures with 
prestressing (Klusá ek, 2002; Klusá ek & Bažant, 2003; Klusá ek et al, 2008). The 
application of artificial neural networks to the determination of damage and strengths 
parameters (Ho a & Schabowicz, 2005) could be promising. The strain analysis of aerated 
concrete members (Hroncová & Piták, 2005), so as the probability based solutions at the 
analysis of the cross-section and special structures (Hroncová, 1996; Králik, 2008; Králik & 
Králik, 2008; Hudoba & Grešlík, 2005; Melcer, 2007) are close connected with the damage 
evaluation. It is the important question of the corrosion influence (Janotka & Kraj i, 2008; 
Kraj i, 2004; Kraj i, 2006; Kraj i & Janotka, 2005) on the damage distribution detected e.g. 
by use of the course of the damage density.

4. Conclusion 
For the damage state of concrete determination it is preferable to express the stress-strain 
diagram of concrete by the damage cumulation function. 

The damage cumulation function approximated with the cumulative distribution functions 
is together with the damage density and damage intensity a sensitive and reliable indicator of 
the concrete quality. 

The Weibull, gamma and log-normal cumulative distribution functions were found to be 
suitable for damage cumulation approximation. 

The state of damage could be transparently expressed by the characteristics of the position 
and variability of the probabilistic distribution. 
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