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Summary: Avoiding the Independent Alignment (IA) approximation in the 
classical Doi-Edwards model causes the computation extremely time and 
hardware consuming. Nevertheless some flow situations cannot be modelled with 
the IA approximation. This contribution presents a probabilistic approach not 
taking into account the IA approximation. 

1.  Introduction
The classical Doi-Edwards (DE) model with Independent Alignment (IA) approximation 
describes dynamics of strands between entanglements of a polymer molecule. Under external 
deformation of a sample the strands are deformed affinely, and then they retract to their 
original lengths, preserving their directions, Doi & Edwards (1986). The same stresses are 
achieved if the whole molecules are deformed in this way. However, retraction does not 
preserve direction of the end-to-end vector of a molecule, see Fig.1. This resulted in 
alternatives to the classical DE model, i.e. the DE model without taking into account the IA 
approximation.  

R R R R

Fig. 1  Influence of the primitive path of a molecule on its final end-to-end vector R

In this contribution a probabilistic approach - instead of the IA approximation - is applied. 
The probability density function of an end-to-end molecule vector after deformation is 
calculated using geometrical considerations of reptating motion and a conformation of the 
molecule. Some molecules that decrease their path lengths under affine deformation do not 
retract but deform affinely and contribute to the stress less than according to the DE theory 
with the IA approximation. The present model also respects non-retractility of these 
molecules.
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2.  The probabilistic model 

Let us suppose that a polymeric chain exposed to the deformation gradient 1 rF
r

 is 

confined in a tube. In contrast to a tube that is redeformed affinely after deformation  
the chain is not due to retraction. Let us denote the chain end-to-end vectors before and after 
deformation as R  and R , respectively. The chain is supposed to be unstretchable, hence the 
primitive path lengths of the chain before and after deformation are the same and equal to L .
Let us denote the virtual primitive path length of 'extended' chain after affine deformation but 
before retraction by L.

After retraction the molecule end-to-end vector R  is not directed along the end-to-end 
vector corresponding to the situation after affine deformation 1R F  but before retraction. 
The dot denotes the dot-product between vectors or tensors. Depending on its primitive path 
for fixed R  and 1F , vector R  represents different directions and lengths, see Fig.1 for 
illustration.  

Due to retraction the end-to-end vector R  is not defined unambiguously by the 
deformation gradient and the end-to-end vector before deformation. It is a probabilistic 
variable and is distributed with probability r R , index r relates to retraction.

Not only R  but also the primitive path length L is a probabilistically distributed value, 

however in this study we assume that 
1R F

L L
R

, in other words, we assume 

conservation of a ratio primitive path length vs. chain end-to-end vector before and after 
affine deformation (preceding to retraction). The more an undeformed chain is stretched, the 
more this assumption is justified. 

In the following the probability r R  will be determined. 

Let us denote the initial and end points of vector R  after retraction by P and Q,
respectively, and the corresponding vectors (starting at the origin of coordinates) P  and Q
where the initial point of the chain end-to-end vector is chosen as the origin of coordinates, 
see Fig. 2. The primitive path length of the molecule section PQ equals L .
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Fig. 2  Topology of a molecule before deformation, after affine deformation,  
and after retraction. 

Both vectors P  and Q represent probabilistic variables. They correspond to the vectors 
P P F  and Q Q F  before deformation, where F  is an inverse deformation gradient 
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tensor. The points P  and Q  lie on a primitive path of the undeformed chain, and the length 

of the chain segment P Q  equals kL , where 1 1

1RLk
L R F u F

, u  is unity vector 

in the direction R .

First let us consider those vectors R  for which retraction occurs, i.e. 1k . For any 
deformation due to volume conservation there are vectors R  for which 1k  and retraction 
does not occur, these vectors will be treated later. 

Due to arbitrariness of a primitive path, vector P Q  is distributed with probability density 

function r P Q . With respect to volume conservation it is connected to r R  as 

r r rR P Q R F  (1) 

First let us find the probability distribution functions of the vectors P  and Q  denoted as 

P P  and Q Q , respectively. Let us note that the point P  is achieved by random 
walk from the point O as well as from the point R . Thus the probability of vector P  with its 
end in the infinitesimal vicinity of the point P  is proportional to a product of the probabilities 
arriving to the same point by random walks from the points O and R

P OP R PP P P , (2) 

where

2 2expOP OPP P , (3) 

22expR P R PP P R . (4) 

From the definition of a random walk parameter , 2
2

3
2 kN b

, where b is a random walk 

step, and from the definition of primitive path kL N b  it follows that 

2
1OP k

, (5) 

2
1R P k

. (6) 

After normalisation, we obtain 
3 22

22

2 4 1exp
1 21

P
kP P R

kk
. (7) 

Analogously Q  is distributed
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3 22

22

2 4 1exp
1 21

Q
kQ Q R

kk
. (8) 

To find the probability r P Q  from a vector sum Q  and P  we consider the probability 

P PP P  shifted in such a way that the vector P  starts at the point Q . Let us 

integrate the attained probability over the initial point Q  with density Q Q , see Fig.3 

3

6 2 22 2
3

2 22

d

2 4 1 4 1exp exp d
1 2 1 21

r P QP Q P Q Q Q Q

k kP Q Q R Q R Q
k kk

 (9) 

Fig. 3  Calculation of the probability of a vector sum. 

In fact we calculate convolution of the functions P P  and Q Q . After integration 
we get 

22
3 32 2

22

2 2exp e
11

k P Q kRk
r P Q P Q kR

kk
, (10) 

where

2

2
1k k

. (11) 

Hence, the vector R  - if 1k  after deformation - is distributed with the probability 
density function 

22
3

-| e k R F kRk
r rR R R . (12) 

For the case 1k  the probability density function r P Q  reduces to the Dirac 

function, i.e. that vector R  and deformation 1F  unambiguously define a vector R .

If 1k  then the molecule end-to-end vector after deformation is supposed not to scatter 
and to deform affinely; the molecule folds itself, but preserves its primitive path length. This 
results in putting 1k  in Eq.(12). 
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Now let us determine a probability distribution function R  to which the probability 

function
3

2 2
0 expR R  transforms after step deformation. First it is 

necessary to sum all the probability functions r R R  with all vectors R  scattering, over 

all the vectors R . In other words we calculate a convolution of the functions 0 R  and 

r R R

3
0 drR R R R R . (13) 

Splitting this integral into the regions where 1k  and 1k  we derive a final expression 
for probability distribution function of the end-to-end molecule vector after step deformation 

2 22 22 2
33 3

3

1

e e d 1 e ,

1, 1 1, .
0, 1

k R F kR R FR k
k k

k

R A R A

k
A k

k u F
 (14) 

Treating molecules as Gaussian chains, stress tensor after step deformation is  
22kT RR , (15) 

where

3dR R , (16) 

the dot denotes the quantity being averaged.  
If we take into account relaxation spectrum then for arbitrary deformation history it holds 

0 22 d
t

NG m t t kT RR t . (17) 

3. Conclusions 
There is presented a new, probabilistic approach to reptation. After reptation a molecule end-
to-end vector becomes a probabilistic variable, due to the probabilistic nature of conformation 
of the molecule. Taking into consideration the geometry of conformation of a molecule 
(random walk) the probability distribution function of end-to-end vector of the molecule after 
deformation was calculated. The probability distribution function of end-to-end vectors of the 
whole multitude of molecules is calculated as a convolution of the probability function for 
undeformed state and the probability distribution function for individual molecule after 
deformation.  

The constitutive equation is expressed by a double integral over space. Using this new 
model the shear dumping function is lower than that corresponding to the DE model at strain 
of order of unity and is higher for higher strains. 
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