
MATERIAL INTERFACE PROBLEMS SOLVED BY DOMAIN
DECOMPOSITION METHODS

J. Kruis 1

Summary: This contribution deals with description of various effects on material
interface based on domain decomposition method. Especially perfect and imperfect
interaction of fibre with composite matrix and discontinuous behaviour of some
parameters in heat and mass transfer are studied. The domain solved is split into
subdomains which are identical with material regions and the subdomain interfaces
are identical with material interfaces. Conditions on material interfaces are simply
implemented to numerical analysis as conditions on the subdomain interfaces.

1. Introduction

Description of various effects on material interfaces based on the finite element method usually
leads to difficulties. There are some variables which are discontinuous across the material
interface. As an example can serve moisture content in the moisture transfer or displacement
field of fibre and composite matrix in the case of imperfect bond Kruis and Bittnar (2007). The
classical finite element method is derived for continuous problems and there are not enough
nodal degrees of freedom at nodes for description of the discontinuity.

There are several strategies how to avoid the mentioned difficulties. In the case of moisture
transfer, the discontinuous moisture content is replaced by the relative humidity which is con-
tinuous. Unfortunately, there are tasks where the moisture content is required and the previous
trick cannot be used. In the case of fibre-matrix interaction, contact elements are used but suit-
able stiffness of such elements has to be defined. The main problems occur if the perfect bond
has to be modelled during some part of analysis. Very large stiffness is needed and it deterio-
rates the properties of the system of algebraic equations. The condition number of such matrix
is very large and therefore iterative methods require very large number of iterations. Even the
direct methods suffer from cancellation errors in this case.

On the other hand, domain decomposition methods are very suitable for such problems. The
main advantage is that the methods prescribe some interface conditions between subdomains
which can be used for description of various effects on the material interface. Therefore, the
decomposition of the original domain has to take into account the material regions (domains
or parts of structure with the same material). It means that each material region is covered by
one subdomain. In such case, the material interface coincides with the subdomain interface.
The main advantage from the implementation point of view is that the nodes on the interface
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are doubled in the domain decomposition methods and therefore two different values from both
sides of the interface can be simply stored.

It should be noted that the position of the material interface is assumed fixed and known
in advance. If this assumption is not satisfied, methods like X-FEM have to be used. As
was mentioned before, there is a class of problems where the material interface is fixed and
the proposed strategy can be used. The description of effects on the material interface based on
domain decomposition methods can work on a single processor computer as well as on a parallel
computer. In the case of parallel computing, each material region can be further decomposed
into smaller subdomains and the classical domain decomposition method can be used Kruis
(2006).

The paper is organized as follows. Section 2 briefly summarizes the FETI method because
many ideas of this method are used in this paper. Section 3 describes the heat and mass transfer.
Section 4 deals with the interaction between fibre and composite matrix.

2. Brief overview of the FETI Method

The FETI is an abbreviation of Finite Element Tearing and Interconnecting method which was
introduced by Farhat and Roux in 1991 in reference Farhat and Roux (1991). It is a non-
overlapping domain decomposition method which enforces the continuity among subdomains
by Lagrange multipliers. The FETI method or its variants have been applied to broad class of
two and three dimensional problems of second and fourth order. More details can be found e.g.
in Toselli and Widlund (2005), Farhat and Roux (1994) and Kruis (2006).

Let the original domain be decomposed to m subdomains. Unknown displacements defined
on the j-th subdomain are located in the vector uj . All unknown displacements are located in
the vector

uT =
(
(u1)T , (u2)T , . . . , (um)T

)
(1)

The stiffness matrix of the j-th subdomain is denoted Kj and the stiffness matrix of the whole
problem has the form

K =


K1

K2

. . .
Km

 (2)

The nodal loads of the j-th subdomain are located in the vector f j and the load vector of the
problem has the form

fT =
(
(f 1)T , (f 2)T , . . . , (fm)T

)
(3)

Continuity among subdomains has the form

Bu = 0 (4)

where the Boolean matrix B has the form

B =
(
B1, B2, . . . ,Bm

)
(5)
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The matrices Bj contain only entries equal to 1,−1, 0. With the previously defined notation,
the energy functional has the form

Π(u, λ) =
1

2
uT Ku− uT f + λT Bu (6)

where the vector λ contains Lagrange multipliers. Stationary conditions of the energy func-
tional have the form

∂Π

∂u
= Ku− f + BT λ = 0 (7)

∂Π

∂λ
= Bu = 0 (8)

The known feature of the FETI method is application of a pseudoinverse matrix in relationship
for unknown displacements

u = K+
(
f −BT λ

)
+ Rα (9)

which stems from floating subdomains. The stiffness matrix of a floating subdomain is singular.
The matrix R contains the rigid body modes of particular subdomains and the vector α contains
amplitudes that specifies the contribution of the rigid body motions to the displacements. Except
of utilization of the pseudoinverse matrix, a solvability condition in the form

RT
(
f −BT λ

)
= 0 (10)

has to be taken into account. Substitution of the unknown displacements to the continuity
condition (4) leads to the form

BK+BT λ = BK+f + BRα (11)

Usual notation in the FETI method is the following

F = BK+BT (12)
G = −BR (13)
d = BK+f (14)
e = −RT f (15)

The continuity and solvability conditions can be rewritten with the defined notation in the form(
F G
GT 0

)(
λ
α

)
=

(
d
e

)
(16)

The system of equations (16) is called the coarse or interface problem. It is solved by the
modified conjugate gradient method because the matrix F is not assembled. More details about
the modified conjugate gradient method and its preconditioning can be found in references Kruis
(2006), Farhat and Roux (1994), Rixen and Farhat (1999) and Rixen (2002).
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Figure 1: Domain containing two materials

3. Transport processes

For simplicity, let domain containing only two different materials be assumed and let the ma-
terials be separated by one material interface. The heat and mass transfer is assumed. The
temperature is continuous while the volumetric moisture is discontinuous across the interface.
The domain Ω is decomposed into two subdomains Ω1 and Ω2 with common edge Γ12. The
subdomains Ω1 and Ω2 correspond with material regions. The original boundary is split into
parts Γ1 and Γ2. The situation is depicted in Figure 1. The finite element method is used for
solution. The domains Ω1 and Ω2 are covered by two meshes which are conforming. The con-
formity is assumed also on the interface Γ12. The system of ordinary differential equations after
space discretization by the FEM has the form

Cṙ + Kr + Gλ = f (17)
GT r = d (18)

where C denotes the capacity matrix, K denotes the conductivity matrix, f denotes the vector
of prescribed nodal fluxes, r denotes the vector of nodal unknowns (temperature and volumet-
ric moisture), ṙ denotes the time derivative of the nodal unknowns, λ denotes the vector of
Lagrange multipliers, G denotes the Boolean matrix (similar to the matrices used in the FETI
method Kruis (2006)) and d denotes the vector of jumps. Equation (17) is the balance equa-
tions while (18) describes the discontinuity across the material interface. The magnitude of
discontinuity can be evaluated as follows

d = w2 − f2(g1(w1)) = f1(g2(w2))− w1 (19)

where w1 and w2 are moisture contents on subdomains Ω1 and Ω2, g and f denote the sorption
isotherms. The magnitudes d are located in the vector d.

Time discretization of the system (17) is done by the generalized trapezoidal method which
can be found e.g. in reference Hughes (1987) and has the form

r̃n+1 = rn + ∆t(1− α)ṙn (20)
rn+1 = r̃n+1 + α∆tṙn+1 (21)

where r̃n+1 denotes the predictor, ṙn denotes the vector of time derivatives of the nodal values,
α denotes a control parameter which defines whether the method is explicit or implicit and ∆t
denotes the time step. The system of algebraic equations has the form(

C + α∆tK α∆tG
α∆tGT 0

)(
rn+1

λn+1

)
=

(
α∆tfn+1 + Cr̃n+1

α∆td

)
(22)

where the subscripts denote the iteration number.
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First vector equation in the system (22) has the form

(C + α∆tK) rn+1 + α∆tGλn+1 = α∆tfn+1 + Cr̃n+1 (23)

which resembles the vector equation (7) of the FETI method. But there is significant difference
connected with the matrix C +α∆tK which corresponds to the matrix K in the FETI method.
While the matrix K in the FETI method can be singular for subdomains without Dirichlet
boundary conditions, the matrix C + α∆tK is always nonsingular because the capacity matrix
C is always nonsingular (even for subdomains without Dirichlet boundary conditions). If all
subdomain matrices are nonsingular, no rigid body modes can be computed and the coarse
problem in the FETI method cannot be assembled. Similar problem was studied in connection
with dynamic problems in the reference Farhat et al. (1995).

Because the matrix C + α∆tK is nonsingular, the unknown vector rn+1 can be expressed
as

rn+1 = (C + α∆tK)−1
(
α∆tfn+1 + Cr̃n+1 − α∆tGλn+1

)
(24)

Substitution of (24) to the second equation of (22) leads to the form

α∆tGT (C + α∆tK)−1 Gλn+1 = GT (C + α∆tK)−1
(
α∆tfn+1 + Cr̃n+1

)
− d (25)

Algebraic Babuška-Brezzi conditions Hughes (1987) for this problem have the form

• for all vectors v which satisfy the equation GT v = 0 must hold vT (C + α∆tK) v > 0,

• matrix GT has linearly independent rows.

Both conditions are satisfied because the matrix C is positive definite and the matrix K is
positive semidefinite. Therefore the matrix C + α∆tK is positive definite. The matrix GT

has linearly independent rows because it contains zero matrix entries everywhere except of two
nonzero entries connected with two adjacent degrees of freedom across the interface in each
row.

4. Fibre-matrix interaction

The classical FETI method uses the continuity condition (4) which enforces the same displace-
ments at the boundary nodes. If there is a reason for different displacements between two
neighbour subdomains, the continuity condition transforms itself to a slip condition. The slip
condition can be written in the form

Bu = s (26)

The vector s stores slips between boundary nodes. For this moment, the slip is assumed to be
prescribed and constant.

Let the boundary unknowns be split to two disjunct parts. The boundary unknowns which
satisfy the continuity condition are located in the vector uc, while the boundary unknowns
which satisfy the slip condition are located in the vector us. Similarly to the continuity condition
in the FETI method, the vectors uc and us can be written in the form

uc = Bcu (27)
us = Bsu (28)
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where Bc and Bs are the Boolean matrices. Now, the continuity condition has the form

Bcu = 0 (29)

and the slip condition has the form

Bsu = s (30)

The conditions (29) and (30) can be amalgamated to a new interface condition

Bu =

(
Bc

Bs

)
u =

(
0
s

)
= c (31)

The energy functional can be rewritten to the form

Π =
1

2
uT Ku− uT f + λT (Bu− c) (32)

The stationary conditions have the form

Ku− f + BT λ = 0 (33)
Bu = c (34)

As was mentioned before, the system of two stationary conditions is accompanied by the solv-
ability condition (10). The expression of the vector u given in (9) remains the same and the
interface conditions has the form

BK+BT λ = BK+f + BRα− c (35)

and the solvability condition has the form

RT
(
f −BT λ

)
= 0 (36)

The coarse problem can be written with the help of notation (12) - (15) in the form(
F G
GT 0

)(
λ
α

)
=

(
d− c

e

)
(37)

The modified coarse problem (37) differs from the original coarse problem (16) by the vector
of prescribed slips c on the right hand side.

The prescribed slip between two subdomains is not a common case. On the other hand, the
slip often depends on shear stress. Discretized form of equations used in the coarse problem
requires a discretized law between slip as a difference of two neighbour displacements and
nodal forces as integrals of stresses along element edges. One of the simplest law is the linear
relationship

c = Hλ (38)

where H denotes the compliance matrix. Substitution of (38) to the coarse problem (37) leads
to the form (

F + H G
GT 0

)(
λ
α

)
=

(
d
e

)
(39)

It should be noted that the coarse system of equations (39) is usually solved by the modified
conjugate gradient method. Details can be found in Farhat and Roux (1994) and Kruis (2006).
The only difference with respect to the system (16) is the compliance matrix H . Only one step,
the matrix-vector multiplication, of the modified conjugate gradient method should be changed.
The compliance matrix may be a diagonal or nearly diagonal matrix. More details about this
modification can be found in reference Kruis and Bittnar (2007).
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5. Conclusions

Two different problems connected with the material interface were studied. The transport pro-
cesses lead sometimes to discontinuous response which means that some variables are not con-
tinuous. The second problem was connected with analysis of composite materials where perfect
of imperfect bond between fibre and composite matrix has to be taken into account. The classi-
cal approach based on contact elements with some artificial stiffness works only for very simple
examples. Both problems were formulated in the terms of domain decomposition methods, es-
pecially of the FETI method. Special conditions on the material interfaces are formulated as
the interface conditions used in the domain decomposition methods. It is useful also from the
implementation point of view. The nodes on subdomain interfaces are doubled and there are
two times more components in arrays for storage of all necessary data which is not the case of
the classical finite element method. It is known that the domain decomposition methods can be
easily parallelized.
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