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Summary: This contribution presents experiences and difficulties encountered 
during interpolation of experimental results by Kriging/DACE metamodel. Par-
ticularly, several combinations of regression and correlation parts have been 
tested and optimized in order to ensure monotonicity of the response. Even though 
a certain progress is reported in the current paper, the selection of the proper 
model still remains a challenging task. 

 

1. Introduction 
Cement paste is a fundamental scale from which concrete inherits majority of its properties. 
Experimental results show considerable scatter in the elastic response of cement paste 
samples, however, virtual testing in a computer allows testing the influence of input 
parameters on resulting macroscopic response (Šmilauer, 2006). Last year, a combination of 
CEMHYD3D model with homogenization processes was employed as a basis for an 
optimization (Šmilauer et al., 2008), where the Young modulus and heat of hydration appear 
as objective functions. Question arises, whether results from the optimization of the virtual 
model can be trusted. Our proposed solution is based on a so-called robust optimization 
(Beyer and Sendhoff, 2007) where some selected distance to existing experimental results is 
employed as the robustness measure. Hence, our goal is to create the closest approximation to 
available experimental data and to provide estimation of the quality of that approximation. 

 In this contribution, we demonstrate that actually popular Kriging/DACE (acronym for 
Design and Analysis of Computer Experiments (Sacks et al., 1989)) approximation is far 
away from the surface that is expected to describe physical process underneath. Therefore, 
nonlinear optimization of the maximum monotonicity is presented. Overall, dozen of combi-
nations of regression and correlation parts have been tested. Unfortunately, the importance of 
a proper regression part is more crucial than presented in the optimization literature (Jones, 
2001). The authors have found a regression part that almost ideally describes the physical 
problem, however, the strict monotonicity has not been preserved.  

 

2. Kriging metamodel 
Since the response in terms of mixture parameters is non-linear, the Kriging/DACE (Jones, 
2001) approximation in the space of hydration heat of available real measurements seems as 
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natural choice. Generally, Kriging predictor is composed of a regression and interpolation part 
that constitutes the nonlinear surface among available data (Lophaven,, 2002): 

 ** )()(ŷ γxrβxf TT +=  , (1) 
where f(x) is an a-priori selected set of basis functions creating the response surface and r(x) 
is the correlation term between an unsampled point x and known points si, i=1,...,m : r(x) = 
[R(θ; s1; x) ... R(θ; sm; x)]T, where R is a-priori selected correlation function with unknown 
coefficients θ, see later. The regression part is solved by a generalized least squares solution 

 YRFFRF -1T-1-1T* )(=β  , (2) 

where F is a matrix containing f(x) evaluated at known sites si, R stems for correlation among 
si using again the correlation function R and Y are known values of yi at si. The Kriging part 
then interpolates the residual leading to the system of linear equations  

 ** βγ FYR −=  . (3) 

The use of such metamodel for optimization purposes is less demanding on the regression 
part since an interpolation is dominant and hence, the constant regression part usually suf-
fices. Then, the correlation function is traditionally selected to obtain a positive-definite sys-
tem of equations, mainly restricted to the form 

 )ww,(),, ij

n

j
j θRxwθ −=∏

=1

R(  . (4) 

In our case, a free Matlab toolbox DACE (Lophaven,, 2002) is utilized providing seven 
correlation functions, where five of them are presented in this work: 

 

Name R(θ; dj), dj=wj-wi 

EXP exp(-θj |dj|) 

GAUSS exp(-θj dj
2) 

LIN max{0, 1-θj |dj|} 

SPHERICAL 1-1.5ξj+0.5ξj
3,    ξj = min{1, θj |dj|}

SPLINE 1-15ξj+30ξj
3, for 0 ≤ ξj ≤ 0.2 

  1.25(1-ξj)3 ,  for 0.2 ≤ ξj ≤ 1 

         0         ,  for ξj > 1, ξj = θj |dj| 

Tab. 1: Correlation functions 

Note that at this point we still do not know the tuning/shape parametersθ. Their functional-
ity is twofold: they express the anisotropy among dimensions and also determine the shape of 
the metamodel in the vicinity of given samples. Traditionally, these parameters are found a-
posteriori by minimizing an expected mean squared error (MSE), which leads to the con-
strained nonlinear optimization problem. See e.g. (Jones, 2001) for discussion how to effi-
ciently solve this problem without re-calculation of β* and γ* for this newθ.  
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Designation C3S C2S C3A C4AF Gypsum w/c Fineness
Mass % Mass % Mass % Mass % Vol % - m2/kg

Aalborg white 0,6660 0,2380 0,0340 0,0040 0,0360 0,400 390 24 48 168 [h]
170,3 234 327 [J/g]

Princigallo 0,554 0,184 0,082 0,091 0,051 0,375 530 9,42 80,24 400,00 [h]
63,388 323,247 377,466 [J/g]

BAM Fontana 0,492 0,243 0,090 0,076 0,0652 0,300 380 10,01 144,03 310,69 [h]
159,2624 295,6692 322,3247 [J/g]

Hua 0,688 0,075 0,081 0,092 0,04 0,420 400 24,00 168,00 600,00 [h]
233,4 317,25 339,8 [J/g]

Robeyst 0,634 0,084 0,074 0,100 0,05 0,500 390 14,66 45,79 140,99 [h]
94,07 238,623 348,757 [J/g]

Smolik_Litos 0,612 0,126 0,070 0,100 0,05 0,500 306 10,01 19,19 261,78 [h]
59,9159 329,2083 466,1589 [J/g]

Tamtsia early 0,465 0,246 0,104 0,083 0,05 0,500 340 18,00 24,00 102,00 [h]
279,4076 307,3484 447,0522 [J/g]

Hydration heat (time in h, heat in J/g of cement)

 
Tab. 2: Experimental results of hydration heat 

 

3. Fitting of experimental data 
Particular application is shown on experimental data see Tab. 2, obtained from seven sources, 
consecutively from top: Data measured at CTU by TAMAir isothermal calorimeter, from 
(Princigallo et al., 2003), data from private communication and determined from evaporable 
water content and assumed potential hydration heat 480 J/g, from (Hua et al., 1995), (Robeyst 
et al., 2007), data measured at CTU by TAMAir isothermal calorimeter and finally, from 
(Tamtsia et al., 2004) assuming potential heat 500 J/g. In Tab.2 cement chemical composition, 
gypsum content, w/c and fineness are presented along with measurements of hydration heat at 
three different times recalculated for the same reference temperature of 20°C.  

First, almost linear dependency within the input data caused by volume unity and hence the 
resulting ill-conditioning is solved by Principal Component Analysis (PCA) by transforming 
inputs into the space of principal directions and removing the direction with the smallest 
eigenvalue. Therefore, our approximation is a real function (hydration heat) of seven inputs – 
time plus seven original inputs transformed with PCA to the six dimensions. Next, several 
combinations of regression and correlation functions have been tested, see Fig. 1 and 2. 
Horizontal axes are for time and vertical axes for hydration heat. Note that zero point [0 h, 
0 J/g] has been added to enforce a physically reasonable start of the heat-time relationship.  

There are two main requirements on the approximation. We need an interpolation of ex-
perimental data to precisely describe the behavior in the vicinity of existing experiments and 
oppositely, the best possible description of the trend in extrapolation. This is of great impor-
tance since there is low number of available data and the range of parameters covered is usu-
ally also small. The deficiency of created metamodels for extrapolation purposes is clearly 
visible from Fig. 1 and 2. Whenever the metamodel is far away from given data, the predic-
tion is approaching the mean trend. This means that in distant extrapolation we would obtain 
a flat surface in the case of a constant regression term and a linear surface in a linear case.  
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Fig. 1: Cuts of approximations for not optimized weights θ: Constant regression term (left 

column), linear regression term (right column) and (from top) five correlation functions. 
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Fig. 2: Cuts of approximations for optimized weights θ for minimal MSE:  Constant regres-
sion term (left column), linear regression term (right column) and (from top) five correlation 

functions. 
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Fig. 3: Cut of approximation through experiments using exponential correlation function, lin-
ear term of composition and exponential regression term in time for not optimized weights θ. 

0 500 1000
0

200

400

600

Time [h]

H
ea

t 
[J

/g
 o

f 
ce

m
en

t]

0 500 1000
0

200

400

600

Time [h]

H
ea

t 
[J

/g
 o

f 
ce

m
en

t]

0 500 1000
0

200

400

600

Time [h]

H
ea

t 
[J

/g
 o

f 
ce

m
en

t]

0 500 1000
0

200

400

600

Time [h]

H
ea

t 
[J

/g
 o

f 
ce

m
en

t]

0 500 1000
0

200

400

600

Time [h]

H
ea

t 
[J

/g
 o

f 
ce

m
en

t]

0 500 1000
0

200

400

600

Time [h]

H
ea

t 
[J

/g
 o

f 
ce

m
en

t]

0 500 1000
0

200

400

600

Time [h]

H
ea

t 
[J

/g
 o

f 
ce

m
en

t]

 
Fig. 4: Cut of approximation through experiments using exponential correlation function, lin-
ear term of composition and exponential regression term in time for optimized weights θ for 

minimal MSE. 
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1383



0 500 1000
0

200

400

600

800

Time [h]

H
ea

t 
[J

/g
 o

f 
ce

m
en

t]

0 500 1000
0

200

400

600

800

Time [h]

H
ea

t 
[J

/g
 o

f 
ce

m
en

t]

0 500 1000
0

200

400

600

800

Time [h]

H
ea

t 
[J

/g
 o

f 
ce

m
en

t]

0 500 1000
0

200

400

600

Time [h]

H
ea

t 
[J

/g
 o

f 
ce

m
en

t]

0 500 1000
0

200

400

600

800

Time [h]

H
ea

t 
[J

/g
 o

f 
ce

m
en

t]

0 500 1000
0

200

400

600

800

Time [h]

H
ea

t 
[J

/g
 o

f 
ce

m
en

t]

0 500 1000
0

200

400

600

800

Time [h]

H
ea

t 
[J

/g
 o

f 
ce

m
en

t]

 
Fig. 5: Cut of approximation through experiments with expected mean (black continuous line) 

and MSE bounds (blue dashed lines) for optimized weights θ for maximal monotonicity. 

We have tried a dozen of combinations of regression descriptions and correlation functions 
and finally, a combination of an exponential correlation function, a linear regression of mix-
ture parameters and an exponential regression term (1-e-T) for time T gives reasonable regres-
sion output, see Fig. 3. In Fig. 4, the result for optimized weights θ with respect to the mini-
mal MSE is presented. Since the curve of hydration heat history should be (from physical 
principles) monotonous, the traditional MSE minimization is replaced by minimization of 
a negative (numerical) derivative of a resulting curve in the time direction. As an optimization 
algorithm, the Quasi-Newton line-search method available in Matlab Optimization toolbox 
was used. The optimization algorithm ran 6.5 minutes on AMD Turion MT-37 notebook 
processor with more than 700 evaluations of the metamodel. The resulting curves are pre-
sented in Fig. 5. The approximation that almost ideally describes the physical problem has 
been found, however, the strict monotonicity has not been preserved, see again Fig. 5. 

 

4. Conclusion 
The main advantage of the proposed methodology is that except expected mean Kriging pre-
diction also offers an expected mean squared error (MSE) which serves as a good proxy for 
the distance from the available experimental data, i.e. MSE is zero at given points and is mo-
notonously growing with the distance from the nearest known values, see again Fig. 5. Oppo-
sitely, main disadvantage is the exhausting search for proper model functions. 

Finally, the search for the best closed-form approximation is still a black magic and is 
a part of know-how of every experienced curve fitter. Note that Genetic Programming can be 
used to solve this task using a burden of computational power, see e.g. (Streeter, 2001) for 
more details. 
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