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Summary: The course of amplitude characteristics of physical systems filtration 
capacity is its representative measure. Therefore, this paper focuses on an 
analysis on parametric sensitivity of exactly these characteristics. Research of 
cascade systems used for pneumatic filtration of determined periodical signals 
reveal lack of systematization as well as not identicalness in meaning of obtained 
research results. Analysis of parametric sensitivity, however is carried out on the 
basis of linear mathematical models, also makes it possible to evaluate the model 
sensitivity to nonlinear components.  

 

1. Introduction 
The scope of problems which are commonly referred to in literature as ‘sensitivity analysis’ is 
extremely wide. Sensitivity theory application range covers problems from theoretical 
research methodology through practical industrial issues. Linear model concept is inseparably 
connected with the problem of dynamic properties parametric sensitivity. A mathematical 
linear model of cascade pneumatic systems is a system of ordinary differential equations for 
system with lumped-parameters. Analysis of dynamic properties of this systems can be made 
on the bases eigenvalues, transient or frequency characteristics. Research of cascade systems 
used for pneumatic filtration of determined periodical signals reveal lack of systematization as 
well as not identicalness in meaning of obtained research results. Among periodical signals 
the most frequently used in pneumatic devices [3, 7] are periodical rectangular signals. 
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where: 0p  is  amplitude, T – period, τ  – duration time of pulse in period. 

Information transfer through rectangular pulse sequence can be performed by modulation 
of amplitude ( )0 0 0p p > , fulfillment coefficient Tγ τ=  ( 0 1γ = ÷ ) or frequency 

( )1 0f T f= > . Next the modulated periodical rectangular signal undergoes demodulation 
which involves reconstruction of the constant component of the filter output signal. 
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The filter output wp  signal properties (Siemieniako F. 1995) are represented by: 

( )0outp p f γ=  – the filter static characteristic 

uT  – output signal setting time with accuracy d±  ( )( )0for set outt T p p t dγ≥ − ≤  

Transmission bend. The course of ideal filters amplitude characteristics is shown in Fig. 1. 
In the pass bend ( )G f ω=  is equal to 1, but in stop band it is equal 0. Obviously in real 

filters existence of G  determination error is allowed.  

The course of amplitude characteristics of physical systems filtration capacity is its 
representative measure. Therefore, this paper focuses on an analysis on parametric sensitivity 
of exactly these characteristics. 

 
Fig. 1  Filters ideal amplitude characteristics a) low-pass filter, b) high-pass filter,  

c) band-pass filter, d) band-stop filter 
 

2. Mathematical model 
2. 1. Assumptions 

Cascade pneumatic system operation is accompanied by many physical phenomena which 
condition acceptance of proper assumptions. The most important are: 

• Air is treated as ideal gas 
• Pressure distribution in particular chambers is homogenous, according to the condition 

 d
d
k air

k k

p a
p t ε

<<  (2) 

where: air ka Rκ Θ= is sonic speed in the air (disturbance propagation), kε – maximal 
linear dimension  of thk chamber 

• In systems with changeable volume bellows undergo only strain and their effective 
surface is constant, hence if mobile mass connected with bellows surface is respected, 
equation balance forces acting on bellows thk chamber has a form 

 ( )
2

2k k k k z
d xM C x A p p
dt

+ ⋅ = −  (3) 

• Flow continuity equation in thk  chamber determine mass changes as difference inflows 
and outflows, and it has a form: 
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• Equation of energy balance transported by air and exchanged with environment can be 
expressed as 

 d
d

k
ki kj k

UE E E L
t

− − = +  (5) 

• Mass changes thk  chamber can be determined from the state equation in the following 
way 

 d d d1
d d d

k k k
k k

m p VV p
t R t tΘ
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 (6) 

For initial conditions  0kp , 0kΘ , 0kV   after having respected polytrophic equation  

k kp V constκ = . There was received: 
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κ κ κ
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The concept of the medium constant mass is justified in many cases significantly 
simplifies energy balance and flow continuity equations. 

• Pneumatic resistance flow characteristics resulting from the description of throttling 
flowing air phenomenon are treated as linear or nonlinear. The condition of obtaining 
linear characteristics is forming laminar flow in the resistor channel. 

In engineering calculations a simplification is frequently used involving introducing 
pneumatic conductivity which numerically corresponds to air flow intensity through the 
resistor, with the resistor pressure drop  

 ( )ij ij i jm U p p= −�  (8) 

2.2 Model of Cascade stiff systems  
Generally cascade stiff system (Fig. 2) can consists of chambers of n  volumes 1, , nV V…  

connected by resistors with pneumatic conductivity ( )12 13 1 23 24 2 1, , , , , , , , ,n n n nU U U U U U U −… … … . 
Moreover each chamber can be connected with the initial input signal source respectively, by 
resistors with pneumatic conductivity 01 02 0, , , nU U U… . For each cascade chamber a first order 
differential ordinary equation with constant coefficients were obtained from mass balance 
[INFLOW]-[OUTFLOW]=[ACCUMULATION] after necessary transformations, with 
assumptions (2), (4), (6), (7). Hence, for n  chambers a system of n  equations can be 
obtained: 
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Fig. 2  Physical model of cascade stiff system 
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If ( )/ik ik kk U R Vκ= Θ  denotes, mathematical model of the considered system is a state 
equation 
 0U = AU + Bp�  (10) 

where: [ ]
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2.3. Model of flexible cascade 
In flexible cascade systems, in many applications, movable elements masses ( )nM  are 
significant and cannot be neglected in their mathematical model. In Fig. 3 one chamber of 
flexible cascade is presented as a fragment of a cascade system 
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Fig. 3  Physical model of cascade flexible system 

 

On the bases of equations  (3), (4), (5), and (6) having respected the well known 
dependencies pE iQ c= = Θ , vU c m= Θ , ( )d / dL p V t= , the following equation system 
describing the cascade dynamics has been received 
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If ( )z n zE α= Θ −Θ , where ( )flow rate, density, air temperaturefα =  and medium constant 
quantity (7 are accepted, the equations system describing the cascade will be as follows: 
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 (12) 

Respecting equation (3) of the system (2.11) in equation (2) and assuming that the flows 
( )1n nm −� , ( )1n nm +�  are non linear pressure function linearization should be performed. After 

expanding to Taylor series and after neglecting high-order terms we receive 
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where variables nx , 1np − , 1np + , and zp  are defined with respect to coordinate system with a 
centre 0nx , ( )1 0np − , 0np , ( )1 0np + , and 0zp . Accepting  
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and introducing denotations 2d / dn nx t v=  after transformation mathematical model of the 
cascade (Fig. 3) was obtained in the form of linear state equation 
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The above formula can be easily adjusted for cases when a cascade contains more than two 
resistors (is connected by resistors with more chambers) or when it contains more than one 
flexible bellows.  

For each chamber we can write an equation in the form (13) and accept  the notations 
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the dynamics of the considered multi chamber system can be expressed by linear state 
equation (14)  

 0
d
d

p
t
= +

=

U AU B

W CU
 (14) 
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where 

 

{ }diag 0,1

diam 3 3
diam 3 3
diam 3

n n
n n
n
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= ×
= ×
=

C

C
A
B

 

Entries of matrixes A  and B  are functions of the system constructional parameters. 
 

3. System parametric sensitivity 
3.1. Sensitivity concept 
Dynamic parameters of physical systems depend on theirs structures and constructional 
parameters. Linear mathematical models of these systems can be presented in a form of state 
space equation (14). If changes of the system constructional parameters vector are written in 
the form  

 ( ) ( ) ( )0p t p t ev t= +  (15) 

where: 
( )p t  – nominal vector of the system constructional parameters, 

( )v t  – the system parameters vector deviation function, 
e  – small value 

the sensitivity function can be described by the dependence 

 ( ) ( ) ( )
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, ,
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F p ev t F p t
s p v t

e→

+ −
=  (16) 

If the vector deviation kind and initial conditions are constant the system dynamic properties 
will be functions of its constructional parameters ( ) ( )1 2, , ,i nF p F p p p= … . This function 
analytic with respect to ip  vector parameters in the surroundings of a point defined by 
nominal vector of parameters 0p  can be expanded into Taylors series. First order term of this 
expansion 
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l l
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δ δ
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∂
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is called first order “absolute parametric sensitivity”. Absolute sensitivity of the function 
( )iF p  is defined as a function of parameters ip . Thus the function ( )iF p  variable value is 

equal to 

 1

1

n

i i
i

F pδ
=

Δ = ⋅Δ∑  (18) 

Comparison of sensitivity of a given function ( )iF p  to the system parameters changes is 
possible due to introduction of first order semi-absolute sensitivity. 
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1165



 ( )
0

* * ,
ln

i

l l l
i i i i i

i p p

F p F p
p

ξ δ ξ
=

∂
= = =
∂

 

or  (19) 

 ( )
0

1 ,
ln

i

l l l
i i i i

i p p

F F p
p F

ξ δ ξ
=

∂
= = =
∂

 

Comparison of sensitivity of the system different functions representing the system 
properties (e.g.: chamber pressure, acceleration of the bellows bottom in pneumatic systems) 
to its different parameters is possible through analyzing relative sensitivities  
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∂
= = =

∂
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hence, relative deviation with respect to function F  can be expressed: 
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pF v
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ΔΔ
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The function relative sensitivities to the system different parameters changes depend on each 
other. Relevant dependences can be found by summing them. 

The above equations prove that there are univocal relations between the mentioned kinds 
of sensitivities 
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Hence, the choice of sensitivity kinds in examining physical systems depends on the needs. 
 

3.2. Engine values and their sensitivity 

The study on eigenvalues allows not only for indirect definition of parametric sensitivity as  
they are also helpful in examinations of time or frequency sensitivity characteristics. Matrix 
of eigenvalues [ ]1, , T

nλ λ=Λ …  of real matrix n n×A  (for a free system =U AU� ) is derived 
from solutions of the equation (Kaczorek T., 1976): 

 [ ]det 0λ− =A I  (23) 

For each eigenvalue there exists at least one solution of linear equations: 

 i i i

i i i

k k
w w

λ
λ

=
=

A
A

 (24) 

Solution ( ) ( )1 1
1coli nk k⎡ ⎤= =⎣ ⎦k Y…  is called ‘eigenvalue matrix’ (eigenvector of matrix A ), 

( ) ( )1 1 1
1i nW W −⎡ ⎤= =⎣ ⎦W Y…  is called eigenvalues row of A . Matrix of eigenvectors n n×Y  is 

similarity matrix diagonalizing matrix A : 
 1−=Λ Y AY  (25) 
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Parametric sensitivity of eigenvalues, with the assumption that all the values of the examined 
system are isolated, can be determined from the dependence: 

 1

i ip p
−∂ ∂

=
∂ ∂
Λ AY Y  (26) 

Derivatives of matrix A  in relation to particular parameters can be determined from central 
subtraction: 
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2
i i n i i n
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+ − +∂
=

∂

A AA … … … …
 (27) 

 

3.3 Parametric sensitivity of frequency characteristics 
For shaping characteristics of complex amplitude systems-with numerous parameters, 
exerting a similar influence on properties, it is advantageous to use sensitivity analysis, firs of 
all, due to standardization of examinations, transparency of results, and a possibility of 
defining permissible changes of constructional parameters of the examined systems. 

Determination of spectral transfer functions matrixes ( )G jω  of a system described by 
equation of state (14) is possible after having performed Fourier transformation of this 
equation with zero initial conditions. 
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hence, 

 ( ) [ ] ( )1
0U j j I A Bp jω ω ω−= −  

and then 

 ( ) [ ] ( )1
0W j C j I A Bp jω ω ω−= −  

According to transmittance definition, complex matrix of frequency characteristics has the 
following form: 

 ( ) ( )
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If 1− =Y AY Λ  is to be respected 
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Thus, determination of compound frequency characteristics is reduced to determining values 
of eigenvectors and eigenrows of real matrix A . Dependence of elements of this matrix 

( )ijg jω⎡ ⎤⎣ ⎦  on frequency are frequency characteristics: 
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Sensitivity of frequency characteristics in relation to parameter ip  can be expressed: 
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Significant simplification of calculation can be obtained after earlier determination of 

parametric eigenvalues and after including 1

i ip p
−∂ ∂

=
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A AY Y  and expression [ ] 1jω −−I A  into 

transformations, by means of eigenvectors and eigenrows. 
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, parametric sensitivity of real frequency 

characteristics can be expressed as follows: 
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4. Scope and method of calculations 
Spectral transmittances of the examined systems were determined by using a method based on 
solving eigenvalues  of mathematical models. During determining values of eigenvectors and 
eigenrows there was used an algorithm involving using a series of transformations of matrix 
A  similarity, reducing it to the upper part of Hessenberg shape, and then transforming QR  
into the quasi-triangular shape. Calculation of eigenvalues and eigenrows of matrixes A  in 
this way, is based on similarity transformation properties. If AY  is matrix of eigenvalues of 
square matrix A , and BY  is a matrix of eigenvectors of square matrix B , then there exists 
dependence A B=Y PY . Derivatives of matrix A  towards particular parameters were 
determined from central subtraction (27). 

The scope of the cascade constructional parameters change accepted for the research, 
corresponding to values occurring in pneumatic devices, allowed for evaluation of the 
influence of these changes on the course of amplitude logarithmic  characteristics, which in 
turn, enabled assessment of parametric sensitivity of the examined cascades in their 
application for periodical signals filtration. Values of particular parameters changed within 

Engineering Mechanics 2009, Svratka, Czech Republic, May 11 – 14

1168



the following range: 6 4 35 10 1 10 mV − −= ⋅ ÷ ⋅ , 8 8 -1 -10.1 10 0.6 10 kg s PaU − −= ⋅ ÷ ⋅ ⋅ ⋅ , 
4 4 23 10 9 10 mS − −= ⋅ ÷ ⋅ ,  0.7 0.5kgM = ÷ , -1250 1000 N mC = ÷ ⋅ . 

For simulation tests and analysis of the systems parametric sensitivity Marix VI.10[9] 
program was used. 

The program makes it possible to: 
− solve the eigenvalue of matrix of state 
− determine trajectory of the model solution with assigned initial conditions  
− (graphic presentation) in the period of time establised by the user, 
− determine spectral trnsmittance and drafting frequency characteristics (phase, 

amplitude, and amplitude-logarythmic ) within the frequency range established by the 
user, 

− determine parametric sensitivity of the above mentioned dynamic properties in 
a graphic form ( for time courses and frequency characeristics ), 

− record and configure  the examined system on the disc and its repeated reading (own 
format of data), 
 

5. Study results of selected structures 
5.1. General information 
During design of pneumatic filters of priodical sygnals, the choice of a proper flow circuit 
containing active resistsances , interances and capacities is of big importance. The choice of 
the system  appropriate structure and its parameters should provide desired characteristics of 
filter systems frequencies. The desired characteristics are characteristics of such a system that 
damps the amplitude of particular harmonics of the considered course, with desired accuracy, 
at the same time, damping the harmonics involves smoothing(cutting out) courses with higher 
frequencies: within the band of defined frequencies with lower or higher frequencies from 
certain boundary frequency. 

The purpose of initial examinations of pneumatic filter systems was to establish structures 
and the nominal vector of parameters of these systems accomplishing the task of: 

− low-pass filters, 
− high-pass filters, 
− band-pass filters. 
The results of parametric sensitivity analysis of selected pneumatic systems are presented 

below. 
 

5.2. Pneumatic low pass filter  
The task of pneumatic low pass filter can be performed by a system built from constant 
resistance and a chamber with constant volume linked in a series manner. 

If filtration quality requirements are defined (Siemieniako F.,1995) then the low pass filter 
structures must be sought among multi-chamber structures and appropriate link of chambers 
through pneumatic resistance of different values. 

In this paper there have been presented results of analysis of parametric sensitivity of 
a two-chamber cascade amplitude characteristics presented in figure 4.  
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Fig 4  Pneumatic two-chamber cascade 

 
For the system as in figure 5.1, it can be written: 

 
( ) ( )

( ) ( )

1 1
01 0 1 12 2 1

0

2 2
02 0 2 12 1 2

0

d
d
d
d

V p U p p U p p
R t
V p U p p U p p
R t

κ

κ

⎧ = − + −⎪ Θ⎪
⎨
⎪ = − + −
⎪ Θ⎩

 (32) 

Hence, the matrix equation of state has the form: 

 p= +U AU B�  
where: 

[ ] [ ]1 2
1 2 0

d d , , ,
d d

Tp p p p p p
t t

⎡ ⎤= = =⎢ ⎥⎣ ⎦
U U�  

0 0
01 02

1 1

T
R RU U
V V

κ κ⎡ ⎤Θ Θ
= ⎢ ⎥
⎣ ⎦

B  

( )

( )

0 0
01 12 12

1 1

0 0
12 02 12

2 2

TR RU U U
V V

R RU U U
V V

κ κ

κ κ

Θ Θ⎡ ⎤− +⎢ ⎥
⎢ ⎥=

Θ Θ⎢ ⎥
− +⎢ ⎥

⎣ ⎦

A  

For parameters 4 3
1 2 1.0 10 mV V −= = ⋅ , 8 -1 -1

01 02 12 0.4 10 kg s PaU U U −= = = ⋅ ⋅ ⋅ , 
-1

0 117724.4 N m kgRκ Θ = ⋅ ⋅  results of calculations are presented in figures 5,6,7. 
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Fig. 5  Absolute sensitivity of logarithmic characteristics of amplitude cascade from fig.4, 

input signal is 1p  
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Fig. 6  Absolute sensitivity of the cascade logarithmic characteristics from figure 4, output 

signal is 2p  
 

According to figure 6 (input signal is 2p ),eg. for -110 rad sω = ⋅  absolute sensitivity of 
logarithmic amplitude characteristics for particular parameters will be as follows: 

6
20.075 10L V−Δ = − ⋅ Δ , 6

10.17 10L V−Δ = − ⋅ Δ , 6
012000 10L U−Δ = ⋅ Δ , 6

023500 10L U−Δ = ⋅ Δ , 
6

12150 10L U−Δ = ⋅ Δ . 

Comparison of the influence of particular parameters on the course of amplitude 
characteristics of the system from figure 4 can be made  on the basis of semi-absolute 
sensitivity (fig. 7). Eg. for -1100 rad sω > ⋅  the influence of 01U , 12U , 1V  as compared to the 
influence of 02U  and 2V , on the course of amplitude characteristics of this system, is to be 
neglected. 
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Fig.7  Semi-absolute sensitivity of logarithmic amplitude characteristics:  

a- input signal is 1p , output signal is 2p  

5.3. Pneumatic high pass filter 
Search for high pass filter was carried out among pneumatic two and three-chamber systems.  
Among two-chamber cascades no structure performing the task of high pass with specified 
filtration quality has been found. However, three-chamber systems make it possible to build 
many structures with considerabely varying parameters (U , V , C , M , S ), which can 
perform the tasks of high pass filter. In the present stage of research it is not possible to make 
a classification of structures or present a table of parameters of a given structure in the 
function of quantities representing the quality of filtration (e.g. lower limit of not damped 
periodicities). Therefore, in this paper there have been presented examination results of 
analysis of sensitivity for a selected pneumatic three-chamber  cascade (fig. 8). 

 
Fig. 8  Scheme of a three- chamber cascade pneumatic structure 
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The above pneumatic cascade can be described by the follwing equation: 
0 10 01

01 1 1 01 0
1 1 1

0 20 20 02
02 2 1 2 02 0

2 2 2 2

3 0 30
30 3 2

3 3

1
1

2
2

1 1
1 2 1

1 1 1

2 2
2 3 2

2 2 2

d
d
d
d

d
d

d
d
dx
d

d
d

d
d

R p S Rp U p U p
t V V V

R p S p S Rp U p U p
t V V V V

p R p SU p
t V V

x
t

t
CS Sp p x

t M M M
CS Sp p x

t M M M

κ κ κϑ

κ κ κ κϑ ϑ

κ κ ϑ

ϑ

ϑ

ϑ

ϑ

Θ Θ⎧ = − − +⎪
⎪

Θ Θ⎪
= − − − +⎪

⎪
⎪ Θ

= − −⎪
⎪
⎪⎪
⎨ =
⎪
⎪

=⎪
⎪
⎪

= − −

= − −
⎩

⎪
⎪
⎪
⎪⎪

 

Hence, matrix equation of state has the form: 
 p= +U AU B�  
where: 

31 2 1 2 1 2dd d d d d d ,
d d d d d d d

Tpp p x x
t t t t t t t

ϑ ϑ⎡ ⎤= ⎢ ⎥⎣ ⎦
U�  

[ ] [ ]1 2 3 1 2 1 2 0, ,p p p x x p pϑ ϑ= =U  

0 0
01 02

1 1

0 0 0 0 0
T

R RU U
V V

κ κ⎡ ⎤Θ Θ
= ⎢ ⎥
⎣ ⎦

B  

0 10
01

1 1

0 20 20
02

2 2 2

0 30
30

3 3

1

1 1 1

2

2 2 1

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1

0 0 0 0

0 0 0 0

R p SU
V V

R p S p SU
V V V

R p SU
V V

CS S
M M M

CS S
M M M

κ κ

κ κ κ

κ κ

Θ⎡ ⎤− −⎢ ⎥
⎢ ⎥

Θ⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎢ ⎥Θ

−⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥⎣ ⎦

A  

The course of logarithmic amplitude characteristics has been defined for different values of 
particular parameters. Presented in fig. 9. courses were obtained for parameters presented in 
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table 1 and for 1 2 0.2 kgM M= = , 5 3
1 2 3 1 10 mV V V −= = = ⋅ , 10 1 -1

01 2 10 kg PaU s− −= ⋅ ⋅ ⋅ , 
-1

1 500 N mC = ⋅  

Table 1 

1 2S S=  2C  02U  03U  Sample 
number 2m  -1N m⋅  1 -1kg Pas−⋅ ⋅  1 -1kg Pas−⋅ ⋅  

1 11 10−⋅  11 10⋅  85 10−⋅  91 10−⋅  
2 21 10−⋅  11 10−⋅  71 10−⋅  93 10−⋅  
3 31 10−⋅  41 10−⋅  72 10−⋅  95 10−⋅  

 
Fig. 9  Courses of logarithmic amplitude characteristics of the system from fig. 8  

(output signal is 2p ): a) variable 02U , b) variable 30U , c) variable S , d) variable 2C   
(with change of a given parameter, the other ones were treated as consant, marked in table 1) 

 
Examination of sensitivity of semi-relative parametric logarithmic characteristics of the 
system from figure 8 was carried out for nominal vectors of parameters  

[ ]1 2 1 2 1 2 1 2 3 01 02 30M M S S C C V V V U U UW  

− for vector marked 1W  

1 2 0.2 kgM M= = , 2 2
1 2 1 10 mS S −= = ⋅ , -1

1 500 N mC = ⋅ , -1
2 10 N mC = ⋅ , 5 3

1 2 1 10 mV V −= = ⋅ , 
6 3

3 1 10 mV −= ⋅ , -10 1 -1
01=2 10 kg PaU s−⋅ ⋅ ⋅ , -8 1 -1

02 =5 10 kg PaU s−⋅ ⋅ ⋅ , -9 1 -1
30 =5 10 kg PaU s−⋅ ⋅ ⋅  

− for vector marked 2W  
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1 0.1kgM = , 2 0.2kgM = , 1 2
1 2 1 10 mS S −= = ⋅ , -1

1 500 N mC = ⋅ , -1
2 10 N mC = ⋅ , 

5 3
1 1 10 mV −= ⋅ , 5 3

2 2 10 mV −= ⋅ , 6 3
3 1 10 mV −= ⋅ , -10 1 -1

01=2 10 kg PaU s−⋅ ⋅ ⋅ , 
-7 1 -1

02 =2 10 kg PaU s−⋅ ⋅ ⋅ , -8 1 -1
30 =5 10 kg PaU s−⋅ ⋅ ⋅  

Courses of sensitivity of semi-relative logarithmic amplitude characteristics ( )fξ ω=  for 
particular parameters of the system (output signal is 2p ) have been shown in fig. 10 

 
Fig. 10  Sensitivity of semi-relative logarithmic amplitude characteristics: 

a) vector of parameters 1W , b) vector of parameters 2W  
 

5.4. Pneumatic band-pass filter filter 
Search for pneumatic band-pass filter was carried out in the scope of two and three-chamber 
systems. Values of particular parameters were changed in the following ranges: 

0.1 0.9kgM = ÷ , 2 5 22 10 2 10 mS − −= ⋅ ÷ ⋅ , -1100 1000 N mC = ÷ ⋅ , 1 5 31 10 1 10 mV − −= ⋅ ÷ ⋅ , 
-6 -11 1 -1=5 10 1 10 kg PaU s−⋅ ÷ ⋅ ⋅ ⋅  

The paper deals with results of examinations of two- chamber cascade presented in figure 
11 in a schematic way. 

 
Fig. 11  Scheme of pneumatic two-chamber cascade 
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For the presented system it can be written  

( )

( )

0 10 1 0 10 01
01 12 1 1 12 2 2 01 0

1 1 1 1 1

0 0 20 22
12 1 12 20 2 2

2 2 2

1
1

2
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1 1 1
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2 2 2 2
1 2 2
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d
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d
dx
d
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d

d
d

R p S R p S Rp U U p U p U p
t V V V V V
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t V V V

x
t

t
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S C Sp x p

t M M M

κ κ κ κ κϑ ϑ

κ κ κ ϑ

ϑ

ϑ

ϑ

ϑ

Θ Θ Θ⎧ = − + − + − +⎪
⎪

Θ Θ⎪
= − − + −⎪

⎪
⎪

=⎪⎪
⎨
⎪ =
⎪
⎪
⎪ = −
⎪
⎪
⎪ = − −
⎪⎩

 

Hence, the matrix equation of state has the form: 
 p= +U AU B�  
where: 

1 2 1 2 1 2d d d d d d ,
d d d d d d

Tp p x x
t t t t t t

ϑ ϑ⎡ ⎤= ⎢ ⎥⎣ ⎦
U�  

[ ] [ ]1 2 1 2 1 2 0, ,p p x x p pϑ ϑ= =U  

0
01

1

0 0 0 0 0
T

R U
V

κ⎡ ⎤Θ
= ⎢ ⎥
⎣ ⎦

B  

( )

( )

0 10 1 0 10 2
01 12 12

1 1 1 1

1 1

1 1

0 0 20 2
12 12 20

2 2 2

2 2 2

2 2 1

0 0

0 0 1 0 0 0

1 0 0 0

0 0 0

0 0 0 0 0 1

0 0 0

R p S R p SU U U
V V V V

S C
M M

R R p SU U U
V V V

S S C
M M M

κ κ κ κ

κ κ κ

Θ Θ⎡ ⎤− + − − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥

= ⎢ ⎥Θ Θ⎢ ⎥+ −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥⎣ ⎦

A  

Logarithmic amplitude characteristics (fig. 12) have been determined for the following 
parameters: 1 2 0.2kgM M= = , 4 2

1 2 2 10 mS S −= = ⋅ , -1
1 2 500 N mC C= = ⋅ , 

5 3
1 2 1 10 mV V −= = ⋅ , -6 1 -1

01=2 10 kg PaU s−⋅ ⋅ ⋅ , -7 1 -1
20 =1 10 kg PaU s−⋅ ⋅ ⋅ , -10 1 -1

12 =1 10 kg PaU s−⋅ ⋅ ⋅  
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Fig.12. Logarithmic amplitude characteristics of the cascade from figure 12  

(input signal is 1p ): a) variable 12U , b) variable 20U , c) variable 2S , d) variable 2C  

 

Parametric, semi-relative sensitivity of logarithmic characteristics to particular parameters for 
vector of nominal parameters: 

1 2 0.2 kgM M= = , 2 2
1 2 2 10 mS S −= = ⋅ , -1

1 2 500 N mC C= = ⋅ , 5 3
1 2 1 10 mV V −= = ⋅ , 

-6 1 -1
01=1 10 kg PaU s−⋅ ⋅ ⋅ , -7 1 -1

20 =1 10 kg PaU s−⋅ ⋅ ⋅ , -10 1 -1
12 =1 10 kg PaU s−⋅ ⋅ ⋅ . 

Results have been presented in figure 13. 

 
Fig. 13  Semi-relative sensitivity of logarithmic amplitude characteristics (output signal is 2p ) 
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6. Summary 
6.1. Conclusion 

− Analysis of parametric sensitivity of pneumatic filters was carried out with the 
assumption of linear approximation of pneumatic resistance flow characteristics. The 
obtained results are of importance in terms of quality. It is also important to say that the 
effects of such an assumption are evaluated through  assessment of the divergence 
between the real and linear courses of resistance flow characteristics or through 
comparing the system certain properties obtained on the basis of its linear mathematical 
model and properties determined for the nonlinear model (or experimentally). 

− Presented results reveal that the system filtration capability (course of amplitude 
characteristics) can be easily shaped through a change of some parameters, whereas by 
means of others it is hardly possible or not possible, at all. 

− Sensitivity of the function to changes of filtration parameter 1p  is variable, and depends 
on the value of remaining parameters. This means that for one vector of nominal 
parameters the function can be sensitive to changes of parameter 1p , and for another its 
sensitivity can be equal to zero. 

− Analysis of parametric sensitivity, however is carried out on the basis of linear 
mathematical models, also makes it possible to evaluate the model sensitivity to 
nonlinear components. 

− The choice of structure for a given filter type was made using the method of successive 
trials, and the parameters values were accepted on the basis of analysis of the elaborated 
results. This problem can be solved by the method of structural analysis. Briefly 
speaking the purpose of structural sensitivity analysis is to facilitate easy choice of 
a fairly  accurate model of a given phenomenon. If models of the same phenomena have 
different structures and simultaneously one of their properties within the examined area 
is the same, then, it can be said that the structures are equiponderant (structural stability 
in relation to this property). 

− Determination of parameters for a system with a defined structure, having defined 
properties, is the next important issue which can be solved be the method of sensitivity 
analysis. This task is referred to in literature as modification. 

 

6.2. Shaping the filter static characteristics 
In impulse devices (with periodical signal), working in the range of medium pressures, 
pneumatic resistances realize turbulent flow (having nonlinear flow characteristics). Hence, 
the static characteristics of the filter, both in the function of filling coefficient iλ  and the 
function of amplitude p 0p  of the input system, is nonlinear. There arises a question whether 
there is a possibility of obtaining nonlinear flow characteristics? 

The so far existing analysis as well as results of other researchers allow to state that the 
influence of particular pneumatic parameters of periodical signals ( 0p , f , γ ) on the value of 
constant component of input signal is different. Generally, it can be written: 

 ,0 0 0 1 2np p p k f kγ= + ± ⋅  (33) 

Although coefficients 1k  and k 2k  are not constant in reality, they  will be neglected in further 
considerations due to their low value (to 0,02) and, thus, small changes (-0,01). In figure 15 
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there is presented a course of characteristics ( )1,0p f γ=  for 0 20,60,100 kPap =  with 
frequency of input signal 4Hzf = . 

Periodical signal with established parameters ( 0p , f , γ ) is supplied through the main 
resistance (eg. 01d  or 01d  and 12d ). The second supplying signal with parameters 
( ( )0*, * 1 ,p fγ γ= − ) is supplied to the chamber through correction resistance (e.g. 01kd  or 

02kd ). The range of parameters changes of the examined one-chamber cascade, as well as 
parameters of input signals are presented in table 2, and the course of static characteristics is 
presented in figure 15.  

Similarly, the range of changes of the examined two-chamber cascade was presented in 
table 3, and the course of static characteristics is shown in figure 16. 

 
Fig. 14  The examined cascade structures with correction resistances  

a) one-chamber cascade, b) two-chamber cascade 
 

Table 2. 

On curve l 2 3 4' 5' 6’ 4" 5" 6" 
[ ]01 mmd  0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 

[ ]01 mmkd  0 0 0 0.38 0.43 0.51 0.38 0.43 0.51 

[ ]0 kPap  100 60 20 100 100 100 100 100 100 

[ ]0 * kPap  0 0 0 100 100 100 91 91 91 

Table 3. 

On curve l' 2' 3' 4' 1" 2" 3" 4" 5 6 
[ ]01 mmd  0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 

[ ]01 mmkd  0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 

[ ]02 mmkd  0.38 0.43 0.51 0.60 0.38 0.43 0.51 0.60 0 0 

[ ]0 kPap  100 100 100 100 100 100 100 100 100 100 

[ ]0 * kPap  100 100 100 100 91 91 91 91 0 0 
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Fig. 15  Course of static characteristics of one-chamber filter 
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Fig. 16  Course of static characteristics of two-chamber filter 
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