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Summary: A meshless method based on the local Petrov-Galerkin approach is 
proposed, to solve boundary value problems of piezoelectric and magneto-electro-
elastic solids with continuously varying material properties. Stationary and tran-
sient dynamic 2-D problems are considered in this paper. The mechanical fields 
are described by the equations of motion with an inertial term. To eliminate the 
time-dependence in the governing partial differential equations the Laplace-
transform technique is applied to the governing equations, which are satisfied in 
the Laplace-transformed domain in a weak-form on small subdomains. Nodal 
points are spread on the analyzed domain, and each node is surrounded by a 
small circle for simplicity. The spatial variation of the displacements as well as 
the electric and magnetic potentials are approximated by the Moving Least-
Squares (MLS) scheme. After performing the spatial integrations, one obtains a 
system of linear algebraic equations for nodal unknowns.  

 

1. Introduction 
Modern smart structures, made of piezoelectric and piezomagnetic materials, offer certain 
potential performance advantages over conventional ones, due to their capability of conver-
ting the energy from one type to other (Berlingcourt et al., 1964; Landau et al., 1984; Nan, 
1994). While the piezoelectric and piezomagnetic effects are due to electro-elastic and magne-
to-elastic interaction, respectively, the magnetoelectric effect is the induction of the electrical 
polarization by magnetic field and the induction of magnetization by electric field via electro-
magneto-elastic interactions. Magnetoelectric coupling plays an important role in the dynamic 
behaviour of certain materials, especially compounds which possess simultaneously ferroe-
lectric and ferromagnetic phases [Eringen and Maugin, (1990)]. The electric and magnetic 
symmetry groups for certain crystals permit the piezoelectric and piezomagnetic as well as 
magnetoelectric effects. In centrosymmetric crystals neither of these effects exists. However, 
remarkably large magnetoelectric effects are observed for composites than for either composi-
te constituent [Nan, (1994); Feng and Su, (2006)]. If the volume fraction of constituents is 
varying in a predominant direction then we obtain the so-called functionally graded materials 
(FGMs). Originally these materials have been introduced to benefit from the ideal performan-
ce of its constituents, e.g. high heat and corrosion resistance of ceramics on one side, and lar-
ge mechanical strength and toughness of metals on the other side. A review on various aspects 
of FGMs can be found in the monograph of Suresh and Mortensen (1998). Later, the demand 
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for piezoelectric materials with high strength, high toughness, low thermal expansion coeffi-
cient and low dielectric constant encourages the study of functionally graded piezoelectric 
materials [Zhu et al. (1995); Han et al. (2006)]. According to the best of authors’ knowledge 
there is only one paper [Feng and Su, (2006)] known in lieterature dealing with continuously 
nonhomogeneous magneto-electric materials.  

The solution of general boundary value problems for continuously nonhomogeneous mag-
neto-electro-elastic solids requires advanced numerical methods due to the high mathematical 
complexity. Besides this complication, the magnetic, electric and mechanical fields are 
coupled with each other in the constitutive equations. In spite of the great success of the finite 
element method (FEM) and boundary element method (BEM) as effective numerical tools for 
the solution of boundary value problems in elastic solids, there is still a growing interest in the 
development of new advanced numerical methods. In recent years, meshless formulations are 
becoming popular due to their high adaptability and low costs to prepare input and output data 
in numerical analysis. The moving least-squares (MLS) approximation is generally conside-
red as one of many schemes to interpolate discrete data with a reasonable accuracy. A variety 
of meshless methods has been proposed so far, with some of them being applied only to 
piezoelectric problems [Ohs and Aluru, (2001); Liu et al., (2002)]. They can be derived from 
a weak-form formulation either on the global domain or on a set of local subdomains. In the 
global formulation, background cells are required for the integration of the weak-form. In 
methods based on local weak-form formulation, no background cells are required and therefo-
re they are often referred to as truly meshless methods. The meshless local Petrov-Galerkin 
(MLPG) method is a fundamental base for the derivation of many meshless formulations, 
since trial and test functions can be chosen from different functional spaces (Atluri et al., 
2000; Atluri, 2004; Sladek et al., 2000, 2001, 2003).  Recently, the MLPG method with a 
Heaviside step function as the test functions (Atluri et al., 2003; Sladek et al., 2004) has been 
applied to solve two-dimensional (2-D) homogeneous and continuously nonhomogeneous 
piezoelectric solids (Sladek et al., 2006, 2007a,b).  

In the present paper, the MLPG method is applied to 2-D continuously nonhomogeneous 
piezoelectric and magneto-electro-elastic solids. The coupled governing partial differential 
equations are satisfied in a weak form on small fictitious subdomains. Nodal points are intro-
duced and spread on the analyzed domain and each node is surrounded by a small circle for 
simplicity, but without loss of generality. For a simple shape of subdomains, e.g.  circular 
shape as used in this paper, numerical integrations over them can be easily carried out. The 
integral equations have a very simple nonsingular form. The spatial variations of the displa-
cements as well as the electric and magnetic potentials are approximated by the moving least-
squares scheme (Belytschko et al., 1996; Atluri, (2004). After performing the spatial inte-
grations, a system of linear algebraic equations for the nodal unknowns is obtained. 

 

2. Local boundary integral equations 
Basic equations of phenomenological theory of nonconducting elastic materials consist of the 
governing equations (Maxwell’s equations, the balance of momentum) and the constitutive 
relations. An electro-elastic problem can be considered as a special case of a general magneto-
electro-elastic problem. Therefore, a formulation is given here for a general magneto-electro-
elastic problem. The governing equations, which are complemented by the boundary and ini-
tial conditions, should be solved for the unknown primary field variables such as the elastic 
displacement vector field ( , )iu τx , the electric potential ( , )ψ τx  (or its gradient, called the 
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electric vector field ( , )iE τx ), and the magnetic potential ( , )μ τx  (or its gradient, called the 
magnetic intensity field ( , )iH τx ). The constitutive equations correlate the primary fields 
{ , , }i i iu E H  with the secondary fields { , , }ij i iD Bσ  which are the stress tensor field, the elect-
ric displacement vector field, and the magnetic induction vector field, respectively. The go-
verning equations give not only the relationships between conjugated fields in each of the 
pairs ( , )ij ijσ ε , ( , )i iD E , ( , )i iB H , but describe also the electro-magneto-elastic interactions in 
the phenomenological theory of continuous solids.  

The electromagnetic fields can be considered as quasi-static [Parton and Kudryavtsev, 
(1988)]. Then, the Maxwell equations are reduced to two scalar equations  
   , ( , ) 0j jD τ =x ,                                                                                                                      (1) 
   , ( , ) 0j jB τ =x ,                                                                                                                       (2) 
The rest of the vector Maxwell’s equations in quasi-static approximation, 0∇× =E  and 

0∇× =H , are satisfied identically by an appropriate representation of the fields ( , )τE x and 
( , )τH x  as gradients of scalar electric and magnetic potentials ( , )ψ τx and ( , )μ τx , respective-

ly,  
    ,( , ) ( , )j jE τ ψ τ= −x x ,                                                                                                         (3) 
    ,( , ) ( , )j jH τ μ τ= −x x .                                                                                                         (4) 
To complete the set of governing equations, eqs. (1) and (2), one needs to use the equations of 
motion in an elastic continuum 
   , ( , ) ( , ) ( , )ij j i iX uσ τ τ ρ τ+ =x x x�� ,                                                                                         (5) 
where iu�� , ρ  and iX  denote the acceleration of displacements, the mass density, and the body 
force vector, respectively. A comma after a quantity represents the partial derivatives of the 
quantity and a dot is used for the time derivative.  
Finally, we extend the constitutive equations involving the general electro-magneto-elastic 
interaction (Nan, 1994) to media with spatially dependent material coefficients for continu-
ously non-homogeneous media 
  ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )ij ijkl kl kij k kij kc e E d Hσ τ ε τ τ τ= − −x x x x x x x ,                                                  (6) 
  ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )j jkl kl jk k jk kD e h E Hτ ε τ τ α τ= + +x x x x x x x ,                                                  (7) 
  ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )j jkl kl kj k jk kB d E Hτ ε τ α τ γ τ= + +x x x x x x x ,                                                  (8) 
with the strain tensor ijε  being related to the displacements iu  by 

  ( ), ,
1
2ij i j j iu uε = + .                                                                                                                (9) 

The functional coefficients ( )ijklc x , ( )jkh x , and ( )jkγ x  are the elastic coefficients, dielectric 
permittivities, and magnetic permeabilities, respectively; ( )kije x , ( )kijd x , and ( )jkα x  are 
the piezoelectric, piezomagnetic, and magnetoelectric coefficients, respectively.  

In the case of certain crystal symmetries, one can formulate also the plane-deformation 
problems (Parton and Kudryavtsev, 1988). For instance, in the crystals of hexagonal symmet-
ry with 3x  being the 6-order symmetry axis and assuming 2 0u =  as well as the independence 
on 2x , i.e. ,2( ) 0=i , we have 22 23 12 2 2 0E Hε ε ε= = = = = . Then, the constitutive equations 
(6) - (8) are reduced to the following form 

Sladek J., Sladek V., Solek P., Zhang Ch. #225

1195



   
11 11 13 11 31 31

1 1
33 13 33 33 33 33

3 3
13 44 13 15 15

0 0 0
0 0 0

0 0 2 0 0

c c e d
E H

c c e d
E H

c e d

σ ε
σ ε
σ ε

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

      

             
11

1 1
33

3 3
13

( ) ( ) ( )
2

E H
E H

ε
ε
ε

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥= − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

C x L x K x ,                                                                    (10) 

   
11

1 11 1 11 115
33

3 31 33 33 3 33 3
13

0 0 0 0
0 00

2

D h E He
D e e h E H

ε
α

ε
α

ε

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥= + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 

            
11

1 1
33

3 3
13

( ) ( ) ( )
2

E H
E H

ε
ε
ε

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥= + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

G x H x Α x ,                                                                   (11) 

   
11

1 11 1 11 115
33

3 31 33 33 3 33 3
13

0 0 0 0
0 00

2

B E Hd
B d d E H

ε
α γ

ε
α γ

ε

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥= + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 

            
11

1 1
33

3 3
13

( ) ( ) ( )
2

E H
E H

ε
ε
ε

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥= + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

R x A x M x ,                                                                  (12) 

Recall that 22σ  does not influence the governing equations, although it is not vanishing in 
general, since 22 12 12 13 33 13 3c c e Eσ ε ε= + − . 
The following essential and natural boundary conditions are assumed for the mechanical field 

   ( , ) ( , )i iu uτ τ=x x� ,                 on     uΓ , 
   ( , ) ( , )i ij j it n tτ σ τ= =x x� ,      on     tΓ ,   u tΓ = Γ ∪Γ . 

 For the electrical field, we assume 

    ( , ) ( , )ψ τ ψ τ=x x� ,          on     pΓ , 

    ( ) ( , ) ( , ) ( , )i in D Q Qτ τ τ≡ =x x x x� ,      on     qΓ ,   p qΓ = Γ ∪Γ  

and for the magnetic field 

   ( , ) ( , )μ τ μ τ=x x� ,           on     aΓ , 

   ( ) ( , ) ( , ) ( , )i in B S Sτ τ τ≡ =x x x x�  ,        on     bΓ ,   a bΓ = Γ ∪Γ  

where uΓ  is the part of the global boundary Γ  with prescribed displacements, while on tΓ , 

pΓ ,  qΓ , aΓ , and bΓ  the traction vector, the electric potential, the normal component of the 
electric displacement vector, the magnetic potential and the magnetic flux are prescribed, re-
spectively. Recall that ( , )Q τx� can be considered approximately as the surface density of free 
charge, provided that the permittivity of the solid is much greater than that of the surrounding 
medium (vacuum). 
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The initial conditions for the mechanical displacements are assumed as 
   

0
( , ) ( ,0)i iu u

τ
τ

=
=x x    and     

0
( , ) ( ,0)i iu u

τ
τ

=
=x x� �     in   Ω . 

The Laplace-transform technique is applied to eliminate the time variable in the differential 
equations. Applying the Laplace-transform to the governing equations (5) one obtains  

   2
, ( , ) ( ) ( , ) ( , )ij j i ip p u p F pσ ρ− = −x x x x ,                                                                             (13) 

where  p is the Laplace-transform parameter and 

    ( , ) ( , ) ( ,0) ( ,0)i i i iF p X p pu u= + +x x x x� ,     

is the re-defined body force in the Laplace-transformed domain with the initial boundary 
conditions for the displacements ( ,0)iu x  and velocities ( ,0)iu x� . Recall that the subscripts 
take now values 1 and 3. 

Instead of writing the global weak-form for the above governing equations, the MLPG 
method constructs a weak-form over the local fictitious subdomains such as sΩ , which is a 
small region constructed for each node inside the global domain (Atluri, 2004). The local 
subdomains overlap each other, and cover the whole global domain Ω . The local subdomains 
could be of any geometrical shape and size. In the present paper, the local subdomains are 
taken to be of a circular shape for simplicity. The local weak-form of the governing equation 
(13) can be written as                       

2 *
, ( , ) ( ) ( , ) ( , ) ( ) 0

s

ij j i i ikp p u p F p u dσ ρ
Ω

⎡ ⎤− + Ω =⎣ ⎦∫ x x x x x ,                                                 (14) 

where * ( )iku x is a test function.  

Applying the Gauss divergence theorem to eq. (14) one obtains 

* * 2 *
,( , ) ( ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) 0

s s s

ij j ik ij ik j i i ikp n u d p u d F p p u p u dσ σ ρ
∂Ω Ω Ω

⎡ ⎤Γ − Ω+ − Ω =⎣ ⎦∫ ∫ ∫x x x x x x x x x ,                        

                                                                                                                                                (15) 

where s∂Ω  is the boundary of the local subdomain which consists of three parts 

s s st suL∂Ω = ∪Γ ∪Γ   (Atluri, 2004) in general. Here, sL  is the local boundary that is totally 
inside the global domain, stΓ  is the part of the local boundary which coincides with the global 
traction boundary, i.e., st s tΓ = ∂Ω ∩Γ , and similarly suΓ  is the part of the local boundary that 
coincides with the global displacement boundary, i.e., su s uΓ = ∂Ω ∩Γ . 

By choosing a Heaviside step function as the test function * ( )iku x  in each subdomain as  

  * at
( )

0 at
ik s

ik
s

u
δ ∈Ω⎧

= ⎨ ∉Ω⎩

x
x

x
, 

the local weak-form (15) is converted into the following local boundary-domain integral 
equations  
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  2( , ) ( ) ( , ) ( , ) ( , )
s su s st s

i i i i
L

t p d p u p d t p d F p dρ
+Γ Ω Γ Ω

Γ − Ω = − Γ − Ω∫ ∫ ∫ ∫x x x x x� .                          (16)  

Equation (16) is recognized as the overall force equilibrium conditions on the subdomain sΩ . 
Note that the local integral equations (16) are valid for both the homogeneous and nonhomo-
geneous solids. Nonhomogeneous material properties are included in eq. (16) through the 
elastic, piezoelectric and piezomagnetic coefficients in the traction components. 

Similarly, the local weak-form of the governing equation (2) can be written as                       

   *
, ( , ) ( ) 0

s

j jD p v d
Ω

Ω =∫ x x ,                                                                                                (17) 

where *( )v x  is a test function.  

Applying the Gauss divergence theorem to the local weak-form (17) and choosing the Heavi-
side step function as the test function *( )v x  one can obtain   

   ( , ) ( , )
s sp sqL

Q p d Q p d
+Γ Γ

Γ = − Γ∫ ∫x x� ,                                                                                       (18) 

where 

  , , ,( , ) ( , ) ( ) ( , ) ( , ) ( , )j j jkl k l jk k jk k jQ p D p n e u p h p p nψ α μ⎡ ⎤= = − −⎣ ⎦x x x x x x . 

The local integral equation corresponding to the third governing equation (3) has the form 

   ( , ) ( , )
s sa sbL

S p d S p d
+Γ Γ

Γ = − Γ∫ ∫x x� ,                                                                                        (19) 

where the magnetic flux is given by 

  , , ,( , ) ( , ) ( ) ( , ) ( , ) ( , )j j jkl k l kj k jk k jS p B p n d u p p p nα ψ γ μ⎡ ⎤= = − −⎣ ⎦x x x x x x . 

In the MLPG method the test and the trial functions are not necessarily from the same 
functional spaces. On each local subdomain, the test function is chosen as a unit step function 
with its support being identical with the local subdomain. The trial functions, on the other 
hand, are chosen to be the MLS approximations by using a number of nodes spread over the 
domain of influence. According to the MLS (Belytschko et al., 1996) method, the 
approximation of the displacements can be given as 

   
1

( ) ( ) ( ) ( ) ( )
m

h T
i i

i
p a

=

= =∑u x x x p x a x , 

where { }1 2( ) ( ), ( ),... ( )T
mp p p=p x x x x  is a vector of complete basis functions of order m  and 

{ }1 2( ) ( ), ( ),... ( )ma a a=a x x x x  is a vector of unknown parameters that depend on x.  

The approximated functions for the Laplace-transforms of the mechanical displacements, the 
electric and magnetic potentials can be written as (Atluri, 2004) 

 
1

ˆ ˆ( , ) ( ) ( ) ( )
n

h T a a

a
p pφ

=

= ⋅ =∑u x Φ x u x u ,    

  
1

ˆ( , ) ( ) ( )
n

h a a

a
p pψ φ ψ

=

=∑x x ,                                                                                                                                  
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1

ˆ( , ) ( ) ( )
n

h a a

a
p pμ φ μ

=

=∑x x ,                                                                                                  (20) 

where the nodal values ( )1 3ˆ ˆ ˆ( ) ( ), ( )
Ta a ap u p u p=u  , ˆ ( )a pψ  and ˆ ( )a pμ  are fictitious parameters 

for the Laplace-transforms of the displacements, the electric and magnetic potentials, 
respectively, and ( )aφ x  is the shape function associated with the node a. The number of 
nodes n used for the approximation is determined by the weight function ( )aw x . A 4th order 
spline-type weight function is applied in the present work 

  

2 3 4

1 6 8 3 , 0( )

0,

a a a
a a

a a a a

a a

d d d d rw r r r
d r

⎧ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− + − ≤ ≤⎪ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= ⎨ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎪ ≥⎩

x ,                                              (21) 

where a ad = −x x  and ar  is the size of the support domain. It is seen that the 
1C − continuity is ensured over the entire domain, and therefore the continuity conditions of 

the tractions, the electric charge and the magnetic flux are satisfied. 

The Laplace-transform of the traction vector ( , )it px  at a boundary point s∈∂Ωx  is 
approximated in terms of the same nodal values ˆ ( )a pu  as 

1 1 1

ˆˆ ˆ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
n n n

h a a a a a a

a a a
p p p pψ μ

= = =

= + +∑ ∑ ∑t x N x C x B x u N x L x P x N x K x P x ,                            

                                                                                                                                             (22)  
where the matrices ( ), ( )C x L x  and ( )K x  are defined in eq. (10), the matrix  N(x) is related to 
the normal vector n(x) on s∂Ω  by 

  1 3

3 1

0
( )

0
n n

n n
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

N x  

and finally, the matrices aB  and aP  are represented by the gradients of the shape functions as 

  
,1

,3

,3 ,1

0
( ) 0

a

a a

a a

φ
φ

φ φ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

B x ,       ,1

,3

( )
a

a
a

φ
φ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

P x .                  

Similarly the Laplace-transform of the normal component of the electric displacement vector 
( , )Q px can be approximated by 

1 1 1
1 1 1

ˆˆ ˆ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
n n n

h a a a a a a

a a a

Q p p p pψ μ
= = =

= − −∑ ∑ ∑x N x G x B x u N x H x P x N x A x P x ,                         

                                                                                                                                             (23) 
where the matrices ( ), ( )G x H x  and ( )A x  are defined in eq. (11) and 
   [ ]1 1 3( ) n n=N x .    

Eventually, the Laplace-transform of the magnetic flux ( , )S px  is approximated by 

1 1 1
1 1 1

ˆˆ ˆ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
n n n

h a a a a a a

a a a

S p p p pψ μ
= = =

= − −∑ ∑ ∑x N x R x B x u N x A x P x N x M x P x .                          

                                                                                                                                            (24)                  
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Satisfying the essential boundary conditions and making use of the approximation formula 
(20), one obtains the discretized form of these boundary conditions as 

       
1

ˆ( ) ( ) ( , )
n

a a

a

p pφ
=

=∑ ζ u u ζ�   for   u∈Γζ ,  

      
1

ˆ( ) ( ) ( , )
n

a a

a
p pφ ψ ψ

=

=∑ ζ ζ�  for   p∈Γζ ,        

     
1

ˆ( ) ( , )
n

a a

a
pφ μ μ

=

=∑ ζ ζ�     for   a∈Γζ .                                                                                (25)   
 

Furthermore, in view of the MLS-approximation (22)-(24) for the unknown quantities in the 
local boundary-domain integral equations (16), (18) and (19), we obtain their discretized 
forms as 

2

1 1

ˆˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
s st s s sq

n n
a a a a a

a aL L

d p d p d pρ φ
= =+Γ Ω +Γ

⎛ ⎞⎛ ⎞
⎜ ⎟Γ − Ω + Γ +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑ ∑∫ ∫ ∫N x C x B x I x u N x L x P x ψ
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n
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d p p d p d
= +Γ Γ Ω

⎛ ⎞
+ Γ = − Γ − Ω⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∫ ∫ ∫N x K x P x μ t x F x�  ,                          (26)  

  1 1
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s sp s sp

n n
a a a a

a aL L

d p d p
= =+Γ +Γ
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⎜ ⎟ ⎜ ⎟Γ − Γ −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑∫ ∫N x G x B x u N x H x P x ψ          

1
1

ˆ( ) ( ) ( ) ( ) ( , )
s sp sq

n
a a

a L

d p Q p d
= +Γ Γ

⎛ ⎞
⎜ ⎟− Γ = − Γ
⎜ ⎟
⎝ ⎠

∑ ∫ ∫N x A x P x μ x� ,                                                  (27) 

1 1
1 1

ˆˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
s sp s sp

n n
a a a a

a aL L

d p d p
= =+Γ +Γ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟Γ − Γ −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑∫ ∫N x R x B x u N x A x P x ψ          

1
1

ˆ( ) ( ) ( ) ( ) ( , )
s sp sq

n
a a

a L

d p S p d
= +Γ Γ

⎛ ⎞
⎜ ⎟− Γ = − Γ
⎜ ⎟
⎝ ⎠

∑ ∫ ∫N x M x P x μ x� ,                                                  (28) 

which are considered on the sub-domains adjacent to the interior nodes as well as to the 
boundary nodes on stΓ , sqΓ  and sbΓ  and I is a unit matrix.  

Collecting the discretized local boundary-domain integral equations together with the dis-
cretized boundary conditions for essential boundary conditions results in the complete system 
of linear algebraic equations for the computation of the nodal unknowns, namely, the La-
place-transforms of the fictitious parameters ˆ ( )a pu , ˆ ( )a pψ  and ˆ ( )a pμ . The time dependent 
values of the transformed quantities can be obtained by an inverse Laplace-transform. In the 
present analysis, the Stehfest’s inversion algorithm (Stehfest, 1970) is used.  

 

3. Numerical examples 
In the first example, numerical results for the bending of a square piezoelectric panel are pre-
sented to illustrate the accuracy of the proposed method. The square panel with a size 
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1 1a a mm mm× = ×  made of a PZT-4 material is subjected to a pure bending moment arising 
from a linearly varying stress at the right boundary (Fig. 1). The lower boundary of the panel 
is earthed, i.e. vanishing electrical potential is assumed on this side of panel. The other boun-
daries have prescribed vanishing electrical charge. 
 

11

121

1

111

Q=0

,

, =0Ψ

x1

x3

t =t =01 3

t =x -a/2
1 3

t =t =0
1 3

u = =0
1 3
t

22 42

Q=0

Q=0

 
 

Fig. 1  Bending of a square piezoelectric panel 
 
The material coefficients corresponding to PZT-4 are following  
 10 2

11 13.9 10c Nm−= ⋅ ,      10 2
13 7.43 10c Nm−= ⋅ ,    10 2

33 11.3 10c Nm−= ⋅ ,      
 10 2

44 2.56 10c Nm−= ⋅ ,     2
15 13.44e Cm−= ,           2

31 6.98e Cm−= − ,       2
33 13.84e Cm−= , 

 9 1
11 6.0 10 ( )h C Vm− −= ⋅ ,  9 1

33 5.47 10 ( )h C Vm− −= ⋅ . 
The mechanical displacement and the electrical potential fields on the finite square panel are 
approximated by using 121 (11x11) nodes equidistantly distributed. First, a static loading 
condition is considered. 
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Fig. 2  Variation of the mechanical displacement 3u  with normalized coordinate 1 /x a  
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Fig. 3  Variation of the electrical potential with normalized coordinate 3 /x a  

 

The analytical solution of the problem is given by Parton et al. (1989). Numerical results 
for the displacement component 3u  along the line 3 / 2x a=  and the electric potential along 
the line 1 / 2x a=  are presented in Figs. 2 and 3. One can observe an excellent agreement of 
the present results and the exact solution in the whole interval considered. To see the influen-
ce of the electrical field on the mechanical displacements the results for a pure elastic panel 
(without electro-elastic interaction 15 31 33 0e e e= = = ) are given in Fig. 2 too. For the conside-
red boundary conditions, the mechanical displacement component 3u  is reduced in the 
piezoelectric panel compared to a pure elastic one. 

An edge crack in a finite strip is analyzed in the next example. The sample geometry is gi-
ven in Fig. 4 with following values: 0.5a = , / 0.4a w =  and / 1.2h w = . Due to the symmet-
ry with respect to 1x only a half of the specimen is modeled.  

a
w

cij0

c exp( x )ij0 1γ

x1

x3

2h

 
 

Fig. 4  An edge crack in a finite strip with graded material properties in 1x  

Engineering Mechanics 2009, Svratka, Czech Republic, May 11 – 14

1202



We have used 930 nodes equidistantly distributed for the MLS approximation of the physi-
cal fields. On the top of the strip a uniform impact tension 0σ  and electrical displacement 

0D (Heaviside time variation) are applied, respectively. Impermeable electrical boundary 
conditions on crack-faces are assumed here (the electrical displacement is vanishing on the 
crack-faces). Functionally graded material properties in 1x coordinate are considered. An 
exponential variation for the elastic, piezoelectric and dielectric tensors is used 
   0 1( ) exp( )ijkl ijklc c xγ=x , 
    0 1( ) exp( )ijk ijke e xγ=x , 
    0 1( ) exp( )ij ijh h xγ=x ,                                                                                                        (31) 

where 0ijklc , 0ijke and 0ijh  correspond to parameters used in the previous example. For 
cracks in homogeneous and linear piezoelectric and piezomagnetic solids the asymptotic be-
haviour of the field quantities has been given by Wang and Mai (2003). In the crack-tip vici-
nity, the displacements and potentials show the classical r  asymptotic behaviour. Hence, 
correspondingly, the stresses, the electrical displacement and the magnetic induction exhibit a 
1/ r  behaviour, where r is the radial polar coordinate with the origin at the crack-tip. 
Garcia-Sanchez et al. (2007) extended the approach used in piezoelectricity to 
magnetoelectroelasticity to obtain the asymptotic expression of generalized intensity factors 

  

1

31Re( )
2

II

I

E

M

K u
K u
K r
K

π
ψ
μ

−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎡ ⎤= ⎣ ⎦⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

Β                                                                                              (32) 

where the matrix B is determined by the material properties (Garcia-Sanchez et al., 2007; 
Garcia-Sanchez and Saez, 2005) and 

  330
lim 2 ( ,0)I r

K r rπ σ
→

= , 

  130
lim 2 ( ,0)II r

K r rπ σ
→

= , 

  30
lim 2 ( ,0)E r

K rD rπ
→

= , 

  30
lim 2 ( ,0)M r

K rB rπ
→

= , 

are the stress intensity factors (SIF) IK  and IIK , EK  is the electrical displacement intensity 
factor (EDIF), and MK  is the magnetic induction intensity factor (MIIF), respectively. 

The influence of the material gradation on the stress intensity factor and the electrical dis-
placement intensity factor is analyzed. The temporal variation of the SIF and the EDIF in the 
cracked strip under a pure mechanical load is presented in Figs. 5 and 6, respectively. The 
static stress intensity factor for the considered load and geometry is equal to 

1/22.642Pa mstat
IK = . Numerical results for a homogeneous strip are compared with the FEM 

ones, and a quite good agreement is observed. For a gradation of the mechanical material pro-
perties with 1x coordinate and a uniform mass density, the wave propagation is increasing 
with 1x . Therefore, the peak value of the SIF is reached in a shorter time instant in FGPM 

Sladek J., Sladek V., Solek P., Zhang Ch. #225

1203



strip than in a homogeneous one. The maximum value of the SIF is only slightly reduced for 
the cracked FGPM strip. 
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Fig. 5  Influence of the material gradation on the stress intensity factor  

in a cracked strip under a pure mechanical impact load 0 ( 0)H tσ −  
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Fig. 6  Influence of the material gradation on the EDIF in a cracked strip under  

a pure mechanical impact load 0 ( 0)H tσ −  
 

Finally, an edge crack in a finite magneto-electro-elastic strip is analyzed. The geometry of 
the cracked specimen is the same as in the previous example. We have used again 930 equi-
distantly distributed nodes for the MLS approximation of the physical fields. On the top of the 
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strip either a uniform tension 0σ  or a uniform magnetic induction 0B  is applied. The functi-
onally graded material properties in the 1x -direction are considered. An exponential variation 
of the elastic, piezoelectric, dielectric, paramagnetic, electromagnetic and magnetic permeabi-
lity coefficients are assumed as 
    0 1( ) exp( )ij ij ff f xγ=x ,                                                                                                      (32) 

where the symbol ijf  is used for particular material coefficients with 0ijf  corresponding to 
the material coefficients for the 3 2 4BaTiO -CoFe O composite and being given by Li (2000) as 

10 2
11 22.6 10c Nm−= × ,  10 2

13 12.4 10c Nm−= ×  ,   10 2
33 21.6 10c Nm−= × , 

10 2
66 4.4 10c Nm−= × , 2

15 5.8e Cm−= ,    2
31 2.2e Cm−= − ,    2

33 9.3e Cm−= , 
 9 2 2

11 5.64 10 /h C Nm−= × ,  9 2 2
33 6.35 10 /h C Nm−= × , 

 15 275.0 /d N Am= ,    21 290.2 /d N Am= ,    22 350.0 /d N Am= , 
 12

11 5.367 10 /Ns VCα −= × ,  12
33 2737.5 10 /Ns VCα −= × , 

 6 2 2
11 297.0 10 Ns Cγ − −= × ,  6 2 2

33 83.5 10 Ns Cγ − −= × , 35500 /kg mρ = , 

and the origin 1 0x =  is assumed at the crack-tip. 

We have considered the same exponential gradation for all coefficients with the value 
2γ =  in the numerical calculations. Then, all material parameters at the crack-tip are 

1 2.718e =  times larger than that in the homogeneous material. Then, the crack-opening-
displacement and potentials are significantly reduced in the nonhomogeneous material with 
gradually increasing material properties in 1x -direction. The normalized stress intensity fac-
tors for homogeneous and nonhomogeneous cracked specimen have the following values, 

0/ 2.105I If K aσ π= =  and 1.565, respectively, for a static load. With increasing gradient 
parameter γ  the SIF is decreasing. A similar phenomenon is observed for an edge crack in an 
elastic FGM strip under a mechanical loading (Dolbow and Gosz, 2002) and for a cracked 
piezoelectric FGM specimen (Sladek et al., 2007a). For a crack in a homogeneous magneto-
electro-elastic solid the SIF, EDIF and magnetic induction intensity factor (MIIF) are un-
coupled. However, this conclusion is not valid generally for a continuously nonhomogeneous 
solid. We have obtained the following normalized quantities: / 0.04866stat

e E IK KΛ =  and 
/ 0.00412stat

m M IK KΛ = . For normalized electrical displacement and magnetic induction in-
tensity factors we have used the parameters 33 33/e e hΛ = and 33 33/m d γΛ = , respectively. 

Next, the strip is subjected to an impact mechanical load with Heaviside time variation and 
the intensity 0 1Paσ = . The impermeable boundary conditions for the electric displacement 
and magnetic flux on the crack-faces are considered. The time variation of the normalized 
stress intensity factor is given in Fig. 7, where 1/ 22.642Pa mstat

IK = ⋅ . The boundary value 
problem for a homogeneous material has been analyzed also by the FEM code ANSYS. One 
can observe a quite good agreement of the results. For graded elasticity coefficients along the 

1x -coordinate and a uniform mass density, the wave propagation is increasing with 1x . The-
refore, the peak value of the SIF is reached in a shorter time instant in a functionally graded 
strip than that in a homogeneous one. The maximum value of the SIF is only slightly reduced 
for the cracked FGM strip. 
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Fig. 7  Normalized stress intensity factor for an edge crack in a strip under a pure mechanical 

load 0 ( 0)Hσ τ −  
 

4. Conclusions 
A meshless local Petrov-Galerkin method (MLPG) is presented for modelling of plane 
piezoelectric and magneto-electro-elastic problems. Both static and impact loads are conside-
red. The Laplace-transform technique is applied to eliminate the time variable in the coupled 
governing partial differential equations. The analyzed domain is divided into small overlap-
ping circular subdomains. A unit step function is used as the test function in the local weak-
form of the governing partial differential equations. The derived local boundary-domain inte-
gral equations are non-singular. The moving least-squares (MLS) scheme is adopted for the 
approximation of the physical field quantities. The proposed method is a truly meshless 
method, which requires neither domain elements nor background cells in either the interpo-
lation or the integration.  

The present method is an alternative numerical tool to many existing computational 
methods such as the  FEM or the BEM. The main advantage of the present method is its sim-
plicity. Compared to the conventional BEM, the present method requires no fundamental so-
lutions and all integrands in the present formulation are regular. Thus, no special numerical 
techniques are required to evaluate the integrals. It should be noted here that the fundamental 
solutions are not available for magneto-electro-elastic solids with continuously varying mate-
rial properties in general cases. The present formulation also possesses the generality of the 
FEM. Therefore, the method is promising for numerical analysis of multi-field problems like 
piezoelectric, electro-magnetic or thermoelastic problems, which cannot be solved efficiently 
by the conventional BEM.  
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