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Summary: The paper deals with parallel solution of contact shape optimization
problems. We propose for the parallel solution of the state problem a domain de-
composition technique based on the Finite Element Tearing and Interconnecting
(FETI) method originally proposed in (Farhat and Roux, 1991; Farhat et al., 1994).
Although this method was proposed for linear problems, it was adopted to solution
of the contact problems (Dostál and Vondrák, 1997; Dostál et al., 2000). In this
paper, we describe a new variant of this method that we call Total FETI (Dostál
et al., 2005). We exploit the same method for the efficient parallel solution of sensi-
tivity analysis which shows to be the most expensive part of the shape optimization
process. The efficiency of proposed method will be demonstrated on numerical ex-
amples.

1. Introduction

The contact shape optimization problem is one of the computationally most challenging prob-
lems. The reason is that not only the cost function is a nonlinear implicit function of the design
variables, but that its evaluation requires also a solution of the highly nonlinear variational in-
equality, which describes the equilibrium of a system of elastic bodies in mutual contact. Since
the cost function must be evaluated many times in the solution process, it is obvious that the
solution of contact problem is a key ingredient of any effective algorithm for the solution of
contact shape optimization problems.

The approach that we propose here is based on the Finite Element Tearing and Intercon-
necting (FETI) domain decomposition method, which was originally proposed by Farhat and
Roux in (Farhat and Roux, 1991; Farhat et al., 1994) for parallel solving of the linear prob-
lems described by elliptic partial differential equations. Its key ingredient is decomposition of
the spatial domain into non-overlapping subdomains that are ”glued” by Lagrange multipliers,
so that, after eliminating the primal variables, the original problem is reduced to a small, rel-
atively well conditioned, typically equality constrained quadratic programming problem that
is solved iteratively. If the FETI procedure is applied to an elliptic variational inequality, the
resulting quadratic programming problem has not only the equality constraints, but also the
box constraints. Even though the latter is a considerable complication as compared with lin-
ear problems, it seems that the FETI procedure should be even more powerful for the solution
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of variational inequalities than for the linear problems (Dostál, 2004, 2005; Dostál and Horák,
2004). The reason is that FETI not only reduces the original problem to a smaller and better
conditioned one, but it also replaces for free all the inequalities by the bound constraints.

In this paper, we exploit the parallel implementation of our scalable algorithm for contact
problem to the minimization of the compliance of the system of elastic bodies subject to the
volume constraint and some additional constraints. We start our exposition by recalling some
theoretical results and formulae for derivatives of the solution with respect to the design vari-
ables. In particular, it turns out that the derivatives of the solution may be evaluated by the
solution of variational inequalities with the same operator as the state problem. We describe
our Total FETI (TFETI) method for the solution of the resulting variational inequalities in two
steps. First, using the duality theory, the problem to find the minimum of the energy functional
subject to the kinematically admissible displacements is reduced to the contact interface. Then
we exploit an efficient algorithm for the solution of the quadratic programming problems with
simple bounds and possibly some equalities. An especially attractive feature of this approach
is not only high precision of the gradient, but also the fact that relatively expensive factoriza-
tion of the stiffness matrices of the subdomains is carried out only once for each update of the
design variables. Moreover, the factorization update concerns only the subdomains affected by
the update and we usually have good initial approximations for the solution. The efficiency of
the proposed algorithms will be demonstrated on the numerical experiments.

2. Contact problems and Total FETI

Let us start our exposition introducing Total FETI method for the solution of contact problem
of elastic bodies. Assuming that the bodies in potential contact are built from the subdomains
Ω(s), the equilibrium of the system may be described as a solution u of the problem

min j(v) subject to
Ns∑
s=1

B
(s)
I v(s) ≤ gI and

Ns∑
s=1

B
(s)
E v(s) = o, (1)

where j(v) is the energy functional defined by

j(v) =
Ns∑
s=1

1

2
v(s)T K(s)v(s) − v(s)T f (s),

v(s) and f (s) denote the admissible subdomain displacements and the subdomain vector of
prescribed forces, K(s) is the subdomain stiffness matrix, B(s) is a block of the matrix B =[
BT

I , BT
E

]T
that corresponds to Ω(s), and gI is a vector collecting the gaps between the bodies

in the reference configuration. The matrix BI and the vector gI arise from the nodal or mortar
description of non-penetration conditions, while BE describes the “gluing” of the subdomains
into the bodies and the Dirichlet boundary conditions.

To simplify the presentation of basic ideas, we can describe the equilibrium in terms of the
global stiffness matrix K, the vector of global displacements u, and the vector of global loads
f . In the TFETI method, we have

K = diag(K(1), . . . , K(Ns)), u =

⎡⎢⎢⎣
u(1)

...
u(Ns)

⎤⎥⎥⎦ , and f =

⎡⎢⎢⎣
f (1)

...
f (Ns)

⎤⎥⎥⎦ ,
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where K(s), s = 1, . . . , Ns, is a positive semidefinite matrix. The energy function reads

j(v) =
1

2
vT Kv − fT v

and the vector of global displacements u solves

min j(v) subject to BIv ≤ gI and BEv = o. (2)

Alternatively, the global equilibrium may be described by the Karush–Kuhn–Tucker condi-
tions (see, e.g., (Dostál, 2007))

Ku = f −BT λ, λI ≥ o, λT (Bu− g) = o, (3)

where g =
[
gT

I , oT
]T

and λ =
[
λT

I , λT
E

]T
denotes the vector of Lagrange multipliers which may

be interpreted as the reaction forces. The problem (3) differs from the linear problem by the
non-negativity constraint on the components of reaction forces λI and by the complementarity
condition.

We can use the left equation of (3) and the sparsity pattern of K to eliminate the displace-
ments. We shall get the problem to find

max Θ(λ) s.t. λI ≥ o and RT (f −BT λ) = o, (4)

where
Θ(λ) = −1

2
λT BK†BT λ + λT (BK†f − g)− 1

2
fK†f, (5)

K† denotes a generalized inverse that satisfies KK†K = K, and R denotes the full rank matrix
whose columns span the kernel of K. The action of K+ can be effectively evaluated by a variant
of LU–SVD decomposition (Farhat and Géradin, 1998). Recalling the FETI notation

F = BK†BT , ẽ = RT f, G = RT BT , d̃ = BK†f − g,

we can modify (4) to
min θ̃(λ) s.t. λI ≥ 0 and Gλ = ẽ, (6)

where
θ̃(λ) =

1

2
λT Fλ− λT d̃.

3. Contact shape optimization

Let us now assume that the shape of the bodies Ω1, ..., Ωp is controlled by a vector of design
variables α. The energy functional of the contact problem will have the form

j(v, α) =
1

2
vT K(α)v − vT f(α), (7)

where the stiffness matrix K(α) and possibly the vector of external nodal forces f(α) depend on
α. The matrix BI and the vector gI that describe the linearized condition of non-interpenetration
also depend on α, so that the solution u(α) of the contact problem with the region Ωi = Ωi(α)
can be find as the solution of the minimization problem

min j(v, α) subject to v ∈ C(α), (8)
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where
C(α) = {v : BI(α)v ≤ gI(α)}.

Now, we shall consider the contact shape optimization problem to find

min{J (α) : α ∈ Dadm}, (9)

where J (α) is the cost function that derives optimality criterion for design of body Ωi(α). The
set of admissible design variables Dadm defines all feasible designs. For example, if the cost
function is defined by J (α) ≡ J(v, α), then the minimal compliance problem is obtained. Set
of admissible design parameters could be given for example by

Dadm = {l ≤ α ≤ r : vol(Ω(α)) = vol(Ω(0))} (10)

It has been proved that the minimal compliance problem has at least one solution and that
the function J(u, α) considered as a function of α has derivatives under natural assumption
(Haslinger and Neittanmaki, 1996).

4. Sensitivity analysis

The goal of the sensitivity analysis is to find the influence of design change to the solution
of the state problem and to the value of the cost function. It means that we are looking for the
directional derivative of the solution of the state problem

u′(α, β) = lim
t→0+

u(α + tβ)− u(α)

t
(11)

where β denotes the direction of this directional derivative which is substituted during compu-
tation by the vectors Δα = (0, . . . , 0, Δαi, 0, . . . , 0)T for i = 1, . . . , k, where k is the number
of design variables that control the design of bodies.

The simplest method for computation of this derivative is to use the overall forward finite
difference approximation Δu/Δαi to the design sensitivity ∂u/∂αi that is given by

∂u(α)

∂αi

=
Δiu(α)

Δαi

=
u(α1, . . . , αi + Δαi, . . . , αk)− u(α1, . . . , αk)

Δαi

(12)

It follows that the overall finite difference method for evaluation of the gradient of u as a func-
tion of the design variables α requires k +1 solutions of (8). An unpleasant complication is that
the Hessian of this problem is different for each auxiliary problem so that we have to carry out
k + 1 times the decomposition of the block Ki that corresponds to the body whose shape is to
be computed.

This major drawback of the finite difference method can be resolved introducing the analytic
or semi-analytic method of sensitivity analysis for contact problems. Some comparisons of the
efficiency of these methods and overall finite difference method on practical problems solved
by classical FETI method can be found in (Dostál et al., 1998, 2001, 2002). In the rest of this
section, the semi-analytic approach for variational inequalities solved by Total FETI method
will be described.

Let the set I = {i : bi∗(α)u = ci(α)} denote the set of indices of active constraints B(α)u ≤
c(α), let bi∗(α) denote the ith row of matrix B(α), and let the vector u denote the solution of
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the state problem (8). Further, for analysis of all possible cases, we split the set I into the two
sets

Is = {i : i ∈ I ∧ λi > 0} ,

Iw = {i : i ∈ I ∧ λi = 0} , (13)

where Is is the set of indices of nodal variables in, so called, strong constraint, Iw is the set of
indices in weak constraint, and λ is the solution of the dual formulation of the state problem (8).
Using formal differentiation of the Karush-Kuhn-Tucker conditions of problem (8) and some
simplification, we obtain the new problem

min
z∈G̃(α,β)

H̃(α, β), (14)

where

H̃(α, β) =
1

2
z�K(α)z − f̃�(α, β)z,

G̃(α, β) = {z : Bw(α)z ≤ cw(α, β), Bs(α)z = cs(α, β)} ,

and

f̃(α, β) = f ′(α, β)−K ′(α, β)u−B′�(α, β)λ,

Bw(α) = (bj∗(α))j∈Iw
, cw(α, β) =

(
f ′(α, β)− b′j∗(α, β)u

)
j∈Iw

,

Bs(α) = (bj∗(α))j∈Is
, cs(α, β) =

(
f ′(α, β)− b′j∗(α, β)u

)
j∈Is

.

The symbols K ′(α, β), f ′(α, β) and B′(α, β) represent directional derivatives in direction
β; see the definition of u′(α, β). At this place it is important to notice that these derivatives can
be simply evaluated. It has been proved (Haslinger and Neittanmaki, 1996) that the solution of
this problem is the directional derivative u′(α, β) of solution of problem (8).

It is easy to see that the last problem is again a quadratic programming problem with linear
constraints in the form of equalities and inequalities. This problem may be efficiently solved
using Total FETI method which was described in Section 2.

The semi-analytic method for sensitivity analysis requires solution of k quadratic program-
ming problems (14) with the same matrix K†(α). Using this method we exploit not only the
advantages of Total FETI formulation of the problem, but we can use the decomposition and
kernel of matrix K(α) from the solution of the state problem to the sequence of problems in the
semi-analytic sensitivity analysis. Thus the semi-analytic approach requires only one decompo-
sition of the stiffness matrix which compares favorably with k+1 decompositions of the overall
finite difference approach.

5. Numerical experiments

Proposed algorithms were tested on the 3D Hertz problem which is depicted in Figure 1. The
shape of the bottom body was parameterized with 9 and 16 design variables. The compliance
was used as the shape optimization objective function with the constraints on feasible design
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and volume invariance. In case of problem with 16 design variables, the optimized design was
obtained after 120 design iterations and the parallel solution of the one design step was six times
faster then the standard sequential code. Solution times of the sequential and parallel sensitivity
analysis are in Table 1. Comparison of the initial and optimized stress distribution is in Figures
1 and 2. All tests were run on HP Blade server with 18x AMD Opteron Dual Core and Matlab
Parallel Computing Engine.

Figure 1: Initial design stress distribution
Figure 2: Optimized design stress distribu-
tion

Table 1: Performance of parallel sensitivity analysis

Problem State problem Sequential SA Parallel SA Speed-up
3D Hertz 9DV 15s 135s 30s 4.5x
3D Hertz 16DV 15s 240s 40s 6x
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Dostál, Z., Schöberl, J.: Minimizing quadratic functions over non-negative cone with the rate
of convergence and finite termination. Comput. Optim. Appl., 30, 1, 23–44 (2005)
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