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Summary: A practical framework for generating cross correlated fields with a
specified marginal distribution function, an autocorrelation function and cross cor-
relation coefficients is presented in the paper. The approach relies on well known
series expansion methods for simulation of a Gaussian random field. The proposed
method requires all cross correlated fields over the domain to share an identical au-
tocorrelation function and the cross correlation structure between each pair of sim-
ulated fields to be simply defined by a cross correlation coefficient. Such relations
result in specific properties of eigenvectors of covariancematrices of discretized
field over the domain. These properties are used to decomposethe eigenproblem
which must normally be solved in computing the series expansion into two smaller
eigenproblems. Such a decomposition represents a significant reduction of compu-
tational effort.
Non-Gaussian components of a multivariate random field are proposed to be sim-
ulated via memoryless transformation of underlying Gaussian random fields for
which the Nataf model is employed to modify the correlation structure. In this
method, the autocorrelation structure of each field is fulfilled exactly while the
cross correlation is only approximated. The associated errors can be computed
before performing simulations and it is shown that the errors happen especially in
the cross correlation between distant points and that they are negligibly small in
practical situations.

1. Introduction

The random nature of many features of physical events is widely recognized both in industry
and by researchers. The randomness of a gust wind, random structural features of materials,
random fluctuations in temperature, humidity, and other environmental factors, all make the
characterization provided by deterministic models of mechanics less satisfactory with respect
to predictive capabilities. However, the entire problem ofuncertainty and reliability can be
addressed in a mathematically precise way and the random characteristics of nature can be
addressed by computational models. For example, spatiallyfluctuating values of material pa-
rameters can be conveniently represented by means of randomfields (e.g. strength, modulus
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of elasticity, fracture energy, etc). Except for the narrowclass of problems that can be solved
analytically, the solution to the variety of complex engineering problems involving uncertainty
regarding mechanical properties and/or the excitations they are subjected to must be found by
means of simulation. The only currently available universal method for accurate solution of
such stochastic mechanics problems is the Monte Carlo technique.

One of the most important stages of the Monte Carlo type simulation technique as applied
to systems with random properties (or systems subjected to random excitations) is the genera-
tion of sample realizations of these random properties. Thegenerated sample functions must
accurately describe the probabilistic characteristics ofthe corresponding stochastic processes or
fields. Moreover, since the analyzed problems are usually computationally intensive (e.g. large
scale nonlinear finite element computations), an analyst must select a simulation technique giv-
ing stable solutions with a small number of samples.

Simulation of non-Gaussian processes is mostly based on memoryless transforms of the stan-
dard Gaussian processes. These processes are known as translation processes Grigoriu (1995).
The central problem is to determine the corresponding Gaussian covariance matrix (or equiva-
lently, the Gaussian power spectral density function) thatyields the target non-Gaussian covari-
ance matrix after the memoryless transformation. Yamazakiand Shinozuka (1988) proposed
an iterative algorithm for generating samples of non-Gaussian random fields with prescribed
spectral density and prescribed marginal distribution function based on iterative updating of the
power spectral density. Recently, Sakamoto and Ghanem (2002) and Puig et al. (2002) utilized
Hermite polynomial chaos method. In their method, the non-Gaussian processes are simulated
by expanding the non-Gaussian distribution using Hermite polynomials with the standard Gaus-
sian variable as argument. The correlation structure is decomposed according to the KLE of the
underlying Gaussian process. The accuracy of this representation was studied by Field and
Grigoriu (2004) who pointed out some limitations of the approach. Grigoriu (2006) criticize
the algorithm for its computational intensity and questionable accuracy. Phoon et al. (2005)
recently proposed simulation of non-Gaussian processes via Karhunen-Loéve expansion with
uncorrelated non-Gaussian coefficients of zero mean and unit variance. The key feature of
their technique is that the distribution of the random coefficients (random variables) is updated
iteratively.

In the present paper (which is a shortened version of the paper by Vořechovský (2008)) the
well known orthogonal transformation of covariance matrixis chosen for representation of a
Gaussian random field, and based on this method a simple extension to the simulation of the
target type of multivariate stochastic fields is shown. After a brief review of the method in the
context of univariate random fields (Sec. 2.) we proceed to cross correlated Gaussian vector
random fields (Sec. 3.) and the proposed method. Sec. 4. showshow the presented approach
can be extended for simulation of non-Gaussian vector random fields via transformations of an
underlying Gaussian random field. Numerical examples and examples of applications of the
method have been dropped due to space limitations, they can be found in Vořechovský (2008).

2. Series expansion methods for the simulation of a random field

Suppose that the spatial variability of a random parameter is described by the Gaussian ran-
dom fieldH(x), wherex ∈ Ω is a continuous parameter (vector coordinate), andΩ is an open
set ofRdim describing the system geometry. The autocorrelation function CHH(x, y) describes
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the autocorrelation structure of a random field, i.e., the the spatial variability. It is a function of
some norm of two pointsx, y ∈ Ω : ‖x, y‖ = {‖x1, y1‖, . . . , ‖xdim, ydim‖}. If the covariance
function depends on distance alone, the function is said to be isotropic.

We will use the orthogonal transformation of the covariancematrix (sometimes called also
the proper orthogonal transformation). The method is well-known in the simulation of univari-
ate random fields and will provide a good basis for illustration of the proposed methodology
for the simulation of multivariate random fields. The important point is that the target random
functions can be suitably simulated by series expansion methods expansion using a finite num-
ber deterministic functions and random variables – coefficients. By means of these random
variablesξj(θ), the approximated random field can be expressed as a finite summation (series
expansion):

Hu(θ) =

Nvar∑
j=1

ξj(θ)
√

λu
j

[
Φu
j

]T
(1)

whereλu
j andΦu

j are the solutions of the eigenvalue problem:Σuu Φu
j = λu

j Φu
j , Σuu is

the covariance matrix of theN (nodal) field valuesu. Nvar ≤ N represents the truncation in
the above discrete spectral representation of the field (random vector). The method is strongly
related to the Karhunen-Loève expansion (KLE) method and can be extended to deliver contin-
uous representation of a field by Kriging (the method is then known as the Expansion optimal
linear estimation – EOLE).

3. Cross correlated Gaussian random fields

It is usual that more than one random property governs the evolution of a system. Consider
for instance Young’s modulus, Poisson’s ratio or strength in mechanical problems, etc. In a
probabilistic concept, all these quantities can be modeledby random fields.

The present paper deals with cases when all fields simulated over a regionΩ share an iden-
tical autocorrelation function overΩ, and the cross correlation structure between each pair of
simulated fields is simply defined by a cross correlation coefficient. Such an assumption en-
ables one to perform the modal transformation in two “small”steps, not in one “big” step, as
proposed by Yamazaki and Shinozuka (1990). The advantage isa significant reduction in the
dimension of the eigenvalue problem considering the fact that the modal decomposition of the
given autocorrelation function (KLE) or matrix (EOLE) is done only once. An illustration of
the algorithms of both methods and their comparison with a detailed description follow.

The key idea of the proposed method is that all cross correlated fields (components) are
expanded using a certain of eigenfunctions/vectors, but the sets of random variables used for
the expansion of each field are cross correlated. In other words, each field is expanded using a
set of independent random variables, but these sets must be correlated with respect to the cross
correlation matrix among all expanded random fields.

3.1. The proposed method for simulation of Gaussian cross-correlated random fields

In this section, we present some definitions needed for the problem formulation, notations and
basic facts used throughout the paper. The most important properties of defined items are stated.

Cross-correlation matrix of random fieldsC is a square symmetric positive definite matrix
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of orderNF with elementsCi,j ∈ (−1; 1) for i 6= j andCi,j = 1 for i = j. Matrix C is a cross-
correlation matrix and defines the correlation structure amongNF random fields.

The cross correlation matrixC hasNF real, positive eigenvaluesλC
j , j = 1 . . . , NF asso-

ciated withNF orthonormal eigenvectorsΦC
j , j = 1, . . . , NF . After ordering them so that

λC
1 ≥ λC

2 ≥ . . . ≥ λC
NF

the eigenvector matrix reads:



ΦC
1 ΦC

2 . . . ΦC
NF,r

. . . ΦC
NF

φC
1,1 φC

1,2 . . . φC
1,NF,r

. . . φC
1,NF

φC
2,1 φC

2,2 . . . φC
2,NF,r

. . . φC
2,NF

...
... . . . . . . . . .

...
φC
NF ,1

φC
NF ,2

. . . φC
NF ,NF,r

. . . φC
NF ,NF

 (2)

and the associated eigenvalues

ΛC = diag
(ΦC

1 ΦC
2 . . . ΦC

NF,r
. . . ΦC

NF

λC
1 λC

2 . . . λC
NF,r

. . . λC
NF

)
Eachj-th eigenvectorΦj

C is normalized to have an Euclidean length of 1, therefore
[
ΦC

]T
ΦC =

I, in which I is an identity matrix. The spectral decomposition of correlation matrixC reads:
CΦC = ΦCΛC. Let us denoteΦC =

(
ΦC

I ΦC
II

)
andΛC =

(
ΛC

I ΛC
II

)
, whereΦC

I =(
ΦC

1 ΦC
2 . . . ΦC

NF,r

)
is the(NF ×NF,r) matrix andΛC

I = diag
(
λC

1 , . . . , λC
NF,r

)
is the(NF,r×

NF,r) diagonal matrix. Partitioning of the matrices can be used later in the reduction of com-
putational effort for the simulation of random fields. It canbe shown that a large amount of
computer memory can be saved at a given level of accuracy if one usesΦC

I instead of fullΦC

(with associatedΛ′s). The idea is that the largest eigenvalues and their corresponding eigenvec-
tors dominate the foregoing transformation, so the second part of the eigenvalues/vectors can
be neglected and theapproximate spectral representation of matrixĈ can be obtained:

Ĉ = ΦC
I ΛC

I

[
ΦC

I

]T
(3)

It can be shown that for the simulation of cross correlated stochastic fields by the methods
described above one needs to simulate a vector of cross correlated random variables for the
expansion. These random variables have theblock cross correlation matrix D of random
variables. Let D be a squared symmetric matrix of order(NF Nvar) assembled in this way:
matrixD consists of (NF ×NF ) blocks (squared matrices)Ci,j I, whereI is the unit matrix of
orderNvar, andCi,j are elements of the cross-correlation matrixC defined previously.

D =



H1 H2 H3 . . . HNF

H1 I C1,2 I C1,3 I . . . C1,NF I

H2
... I C2,3 I . . . C2,NF I

H3
...

... I . . . C3,NF I
...

... sym.
...

. . .
...

HNF
. . . . . . . . . . . . I


D is a correlation matrix having nonzero elements on sub-diagonals of partial square blocks.
The fact that each square block matrix on the diagonal ofD is the (Nvar × Nvar) unit ma-
trix can be simply interpreted: random variables needed forthe expansion of one random field
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Hi, i = 1 . . . NF are uncorrelated (and also independent since we will work with Gaussian
random variables). The off-diagonal square blocks (diagonal matrices) represent cross cor-
relation between each two sets of random variables used for expansion of the fieldsHi and
Hj, i 6= j; i, j = 1, . . . , NF . The key property for the proposed method is the spectral property
of the correlation matrixD. Cross correlation matrixD hasNF Nvar real, positive eigenvalues
λD
j , j = 1, . . . , (NF Nvar) associated with orthogonal eigenvectors. Obviously matrix D has

the same eigenvalues as matrixC, but these areNvar-multiple. Similarly the eigenvectors ofD
are associated with the eigenvectors ofC. The space described byΦC is enriched so that the
dimension isNvar-times higher, but the components of the orthogonal eigenvectorsΦC remain.

After ordering the eigenvalues so thatλD
1 ≥ λD

2 ≥ · · · ≥ λD
NF×Nvar

, one can assemble the
eigenvectors/eigenvalue matrices using a block-matrix with squared block submatrices:ΦD =



ΦD
1 . . . ΦD

NF,r
. . . ΦD

NF

φC
1,1I . . . φC

1,NF,r
I . . . φC

1,NF
I

φC
2,1I . . . φC

2,NF,r
I . . . φC

2,NF
I

... . . .
... . . .

...
φC
NF ,1

I . . . φC
NF ,NF,r

I . . . φC
NF ,NF

I

 (4)

and the eigenvalue matrices corresponding to vector blocks
(
ΦD

1 , . . . ,ΦD
NF

)
: ΛD =

= diag
( ΦD

1 . . . ΦD
NF,r

. . . ΦD
NF

λC
1 I . . . λC

NF,r
I . . . λC

NF
I
)

(5)

whereI is the unit matrix of orderNvar. MatricesC andD are positive definite. Similarly to
Eq. (3) the second part of the eigenvalues/vectors can be neglected and theapproximate spectral
representation of (cross) correlation matrix̂D can be obtained as:

D̂ = ΦD
I ΛD

I

[
ΦD

I

]T
(6)

where the matrixΦD
I , again, contains only the respective eigenvectors to theNF,r eigenvalues.

It might be important to know how the correlation matrix of all NF fields, each discretized
into the same set ofN points(x1, . . . , xN), looks like. We call itfull-block correlation matrix
F. LetF be a squared symmetric matrix of orderNF N assembled as follows. MatrixF consists
of NF × NF blocks (squared matrices)Fi,j

uu which are correlation matrices of orderN . Each
submatrixFi,j

uu = Fj,i
uu =



x1 . . . xl . . . xN

x1 F i,j
1,1 . . . F i,j

1,l . . . F i,j
1,N

...
...

. . .
...

...
...

xk F i,j
k,1 . . . F i,j

k,l . . . F i,j
k,N

...
... . . .

...
. . .

...
xN F i,j

N,1 . . . F i,j
N,l . . . F i,j

N,N

 (7)

is symmetric and the general entryF i,j
k,l = F i,j

l,k = Corr [Hi (xk) , Hl (xl)] has the meaning of
correlation between two field’s (i, j) nodal values at pointsxk, xl (k, l = 1, . . . , N). Matrix F
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can be obtained using the autocorrelation matrixFuu = Fi,i
uu and using the cross-correlation

matrix C among random fields (vectors)H1, . . . , HNF
simply by multiplying the autocorre-

lation by the cross correlation:F i,j
k,l = Ci,jFk,l. Matrix F can be written using the squared

(N ×N) blocksFi,j
uu = Ci,j Fuu as:F =


H1 H2 . . . HNF

H1 Fuu C1,2 Fuu . . . C1,NF Fuu

H2
... Fuu . . . C2,NF Fuu

...
... sym.

. . .
...

HNF
. . . . . . . . . Fuu

 (8)

This illustrates the simple cross correlation relationships between the vector fieldsHi,Hj (sin-
gle correlation coefficientsCi,j). Matrix F is the target cross-correlation matrix of discretized
random fields (random vectors)H1, . . . , HNF

, each discretized into the same set of points
xi, (i = 1, ..., N).

It is not difficult to show that if the correlation matrixF consists of blocks (autocorrelation
matricesFuu, each multiplied by a cross correlation coefficientCi,j), the eigenvector matrix
denotedΦu can be assembled as a block-matrix with block submatricesΦF

1 , . . . ,ΦF
NF

: ΦF =



ΦF
1 . . . ΦF

NF,r
. . . ΦF

NF

φC
1,1Φ

u . . . φC
1,NF,r

Φu . . . φC
1,NF

Φu

φC
2,1Φ

u . . . φC
2,NF,r

Φu . . . φC
2,NF

Φu

... . . .
... . . .

...
φC
NF ,1

Φu . . . φC
NF ,NF,r

Φu . . . φC
NF ,NF

Φu

 (9)

andΛF =

diag
( ΦF

1 . . . ΦF
NF,r

. . . ΦF
NF

λC
1 Λu . . . λC

NF,r
Λu . . . λC

NF
Λu

)
(10)

whereΛu is the (reduced) eigenvalue matrix ofF of orderNvar andλC
i (i = 1, . . . , NF ) are

the eigenvalues of cross correlation matrixC. Note that the eigenvaluesλF are not sorted
automatically even if the eigenvalues of bothΛu andΛC are sorted. The partitioning ofΦF

andΛF in the case that only the reduced number of eigenmodesNF,r of matrixC are available
is obvious.

Block sample matrix χD. Let χD be a(Nvar NF )-dimensional jointly normally distributed
random vector with correlation matrixD. The vector consists ofNF blocks. Each block (sub-
vector)χD

j , j = 1, . . . , NF represents a Gaussian random vector withNvar standard Gaussian
independent (and therefore also non-correlated) random variables (marginals) while the vectors
χD
i , χD

j are cross correlated.

For a given number of realizationsNsim the vectorχD is represented by an(Nvar NF )×Nsim

random matrix. Each of theNsim columns is one realization of a Gaussian random vector. The
random vectorχD is partitioned intoNF vectors each with the dimensionNvar:

χD =
[ [

χD
1

]T [
χD

2

]T [
χD

3

]T
. . .

[
χD
NF

]T ]T
Simulation of the matrixχD is the most important step in the method. The matrixD is targeted
in simulation ofχD as the correlation matrix. The key idea of the method is the utilization of
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spectral decomposition of correlation matrixD as this decomposition is very easy to perform
(Eq. 4). Therefore, the orthogonal transformation of correlation matrix will be used. The uti-
lization of the equivalence with prescribed correlation matrix C among fields has a significant
computational impact: instead of solving theNvar ×NF eigenvalue problem ofD, one needs to
solve theNF eigenvalue problem of prescribed correlation matrixC. In cases when the number
of random variables utilized in the expansion of one random field is large (thousands), the re-
duction is significant. By partitioning the matrixχD into Nvar-dimensional blocks, one obtains
an independent standard Gaussian random vector for the simulation of each of theNF random
fields.

Having Eq. (4) for the correlation matrixD at hand the simulation of the block sample matrix
χD is straightforward (orthogonal transformation of the correlation matrix):

χD = ΦD
(
ΛD

)1/2
ξ (11)

whereξ = {ξi, i = 1, . . . , NF × Nvar} forms a vector of independent standard Gaussian
random variables. Of course, the (sparse) matricesΦD andΛD do not need to be assembled
and stored in computer memory. They can be used in the form of an algorithm, and only the
eigen-matricesΦC andΛC must be solved (or at least their dominating partsΦC

I andΛC
I ).

Yamazaki nad Shinozuka 1990 proposed the universal simulation of discretized multivariate
stochastic fields by one orthogonal transformation of (block) covariance matrixF. The modal
matrix of matrixF is then used for the transformation of random vectorξ composed ofN ×NF

independent Gaussian random variables. The main difference from the method proposed here
is that they need to solve an eigenvalue problem of matrixF that has a large order(N × NF )
while in this paper the problem is decomposed into two separate modal solutions, namely (i)
the autocovariance structure (orderN in EOLE; a reduced number ofNvar eigenmodes must be
solved) and (ii) the cross-correlation matrix of orderNF (NF,r modes). A simple illustration
with a comparison of the approaches is given in Fig. 1. The figure illustrates a) the expansion of
a univariate random field using the random vectorξ and the eigenvalue matrixΛ with associ-
ated eigenfunctions [eigenvectors] in KLE [EOLE], b) the simulation procedure employing one
“huge” orthogonal transformation of the correlation matrix F Yamazaki and Shinozuka (1990):

H = ΦF
(
ΛF

)1/2
ξ (12)

This procedure is general. In our case the correlation matrix F can be assembled using the
products of the cross-correlation matrixC and autocorrelation matrixFuu. We have shown that
the eigenvector and eigenvalue matrices ofC andFuu solved separately can be used to compute
the required matricesΦF andΛF (see Eqs. 9,10) and therefore computational effort can be
saved. It will be shown later that such a technique yields identically good results as the proposed
scheme depicted in the third part c) of the figure: decomposition into (i) the preparation of a
vector of cross correlated random variablesχD and (ii) the expansion of each random fieldHi

using a subsetχD
i and always the same orthogonal base as in a). The advantage ofthe proposed

procedure c) is that the simulation of each random field can bedone separately using either a
KLE or EOLE base while the cross correlated random variablesχD are prepared in advance.
Incorporation into an existing algorithm for simulation ofunivariate fields is therefore simple
and transparent.

4. Transformation to non-Gaussian random fields

In most applications, the Gaussian random fieldH is used to model uncertainties with spatial
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x
NF,r

x =

c  =

H1 H2 H3 HNF

...
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r

D

d)

...

Eq. (11)

Eq. (16)ψ[Φu]ψ[Φu]

ΛuΛu

Φu
1

Λu
1

Φu
2

Λu
2

Φu
3

Λu
3

Φu
NF

Λu
NF

ΦF,ΛF

ΦD
I ,Λ

D
IΦD

I ,Λ
D
I

Figure 1: a) Simulation of a univariate random field usingNvar eigenmodes; b) illustration of
the method due to Yamazaki and Shinozuka (1990); c) proposedmethod for simulation of cross
correlated fields in two steps when components share the samedistribution; d) proposed method
for components with different distributions, where eigenanalysis of each field is performed
separately.

variability because of convenience and a lack of alternative models. However, the Gaussian
model is not applicable in many situations. For example, it cannot be used to model Young’s
modulus or the strength of a material, which is always positive.

Let us denote the marginal cumulative [probability] distribution function (cdf) of each com-
ponentH̃i of the non-Gaussian vector random field̃H by Gi [gi]. In the discretized version,
one can assemble the target correlation matrixF̃ of all random fields by computing the entries
F̃ i,j
k,l as a product of the autocorrelation coefficientF̃ i,j

uu (depending only on the positions of each

pair of points) and the target cross correlationC̃i,j. It would be convenient to find an underlying
Gaussian random fieldH (with some cross correlation matrixC studied earlier) that can be
easily transformed into the target field̃H while keeping the target cross correlation matrix be-
tween these components denoted byC̃. The univariate nonlinear transformation of the Gaussian
variables, called the translation process by Grigoriu (1995) is the mappinghi(·):

H̃i (xk) = hi [Hi (xk)] = G−1
i {Φ [Hi (xk)]} (13)

whereΦ (·) is the standard cumulative Gaussian probability function and i = 1, . . . , NF ; k =
1, . . . , N .

The Nataf 1962 model has been proposed by Liu and Der Kiureghian (1986) for transforming
non-Gaussian multivariate distribution into standardized Gaussian distribution. We will show
how the Nataf model can be used within the presented framework for effective simulation of
cross correlated Gaussian random fields in order to model non-Gaussian fields with prescribed
marginal distributionsGi, the autocorrelation function and cross correlated viaC. For appli-
cation of the Nataf model, the correlation coefficientρ̃i,j of each pair (i, j) of non-Gaussian
variables must be adjusted to form the correlation coefficient ρi,j of a pair of Gaussian vari-
ables. The adjustment has been shown Liu and Der Kiureghian (1986) to be a unique solution
of a certain two-fold integral (Eq. 12 in Liu and Der Kiureghian (1986)) :

ρ̃i,j =

∞∫
−∞

∞∫
−∞

H̃i − µi
σi

H̃j − µj
σj

ϕ (Hi, Hj, ρi,j) dHi dHj (14)
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where the values of the original variables̃Hi, H̃j (with meansµi, µj and standard deviations
σi, σj) are expressed in terms of the the standard Gaussian variables in the spirit of Eq. (13) via
H̃i = G−1

i [Φ (Hi)]. Functionϕ (Hi, Hj, ρi,j) is the standard bivariate Gaussian density. Due to
the uniqueness of the solution, the relationship in Eq. (14)can be expressed as a correction to
the original correlation Liu and Der Kiureghian (1986):

ρi,j = κ ρ̃i,j (15)

In general, the correction factorκ (satisfyingκ ≥ 1) is a function of both marginal distributions
and their correlation:κ = κ (Gi, Gj, ρ̃i,j). For some pairs of distributionsκ becomes just a
constant or a function of only some of the three types of information. Other important properties
are that (i)ρi,j = 0 for ρ̃i,j, (ii) |ρ̃i,j| ≤ |ρi,j| and that (iii)ρ̃i,j is a strictly increasing function of
ρi,j.

In application of the Nataf model, we seek the correspondingcorrelation matrixF of a
Gaussian random vector fieldH. The correct method is to solve the correction factor for each
entry F i,j

k,l = κi,jkl F̃
i,j
k,l depending onGi, Gj and F̃ i,j

k,l . Unfortunately, the full block correlation
matrixF does not follow the simple pattern from Eq. (8) any more. In particular, the diagonal
blocks are not identical anymore, because the distributionsGi may differ in general, and the off-
diagonal blocks are not a simple multiple of the diagonal block (for the same reasons). Even
if the distributionsGi were identical, the correctionsκ would prevent each off-diagonal block
from being a simple multiple of the diagonal block, because in generalCi,js are not zeros (and
also generally are not all the same).

We remark also that not every combination of the autocorrelation structure with the non-
Gaussian marginal distribution can be admissible for the mapping via underlying Gaussian ran-
dom field. There are two possible incompatibilities. The first one arises when the autocorrela-
tion functions of the non-Gaussian fields do not have a corresponding admissible correlations
in the Gaussian space (this happens often in cases of high negative correlations combined with
strongly non-Gaussian marginals). The second incompatibility arises when the auto-correlation
function (or matrix) in the Gaussian space becomes non-positive definite and, therefore, not
admissible. The second problem can sometimes be remedied byignoring negative eigenvalues
and corresponding eigenmodes.

From the preceding paragraphs, it becomes clear that the presented approach for simulation
of Gaussian vector random fields can not generally be employed for simulation of vector ran-
dom fields with arbitrary marginals. However, it is known that for the majority of commonly
used continuous distributions the correction factorsκ are only slightly greater than one Liu and
Der Kiureghian (1986). Therefore, the difference between correlation matricesF andF̃ is usu-
ally very small. The difference actually depends on the “non-Gaussianity” of the distributions
Gi. The closer the component distributionsGi are to the elliptical distributions (Gaussian in-
clusive), the closer these two matrices are. In the paragraphs after the following summary of
the method, we will try to find an approximationF′ of the correct Nataf full correlation matrix
F in order to be able to profit from the presented framework for Gaussian fields.

The proposed procedure for the simulation of random fields can be itemized as follows (see
Fig. 1c,d):

1. Given the common autocorrelation function in original (non-Gaussian) space, a Nataf
correction functionκi (ρ̃) = κ (Gi, Gi, ρ̃) must be found for each fieldi = 1, . . . , NF

over the whole range of autocorrelation coefficientsρ̃. The set of functionsκi transform
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the original correlations into Gaussian space. Then, the spectral analysis of the auto-
correlation structure for each underlying Gaussian field and the choice of the common
number of eigenmodesNvar is made, i.e., Based on the discretization (grid of points) the
autocorrelation matricesFi

uu are assembled and the corresponding sets ofNvar largest
eigenvalues and the corresponding eigenvectors (Φu

i andΛu
i matrices) are determined.

In most cases, the Nataf’s correction will be only slightly greater than one over the whole
range of possible autocorrelations and thus the eigenvalues and eigenfunctions [vectors]
will be very similar for each Gaussian field. Therefore, one can solve one field only and
use iterations to refine the eigenmodes for the other fields.

2. Find a corrected cross correlation matrixC given the target matrix̃C and marginals
G1, . . . , GNF

using the Nataf model. Each off-diagonal entry is obtained as Ci,j =

κi,j C̃i,j, (i, j = 1, . . . , NF ). Then, eigenvalues must be computed with corresponding
orthogonal eigenvectors

(
ΦC

I ΛC
I

)
of the target cross correlation matrixC among ran-

dom fields. The choice of number of eigen-modesNF,r ≤ NF is made.

3. Simulation of Gaussian random vectorξ of Nr = NF,r ·Nvar independent standard Gaus-
sian variablesξj. For a given number of simulationsNsim a random vector becomes an
Nr · Nsim random matrix, whereNsim is a sample size for each random variable. The
LHS technique is recommended for the simulation of the random vector Vořechovský
and Novák (2005).

4. The simulation of cross correlated random vectorχD by matrix multiplication (Eq. 11).
Matrices from Eqs. (4 and 5) of the matrixD (an enlarged matrix from step 2) and a
random matrix from step (3) are utilized.

5. Simulation of all underlying Gaussian fieldsi = 1, . . . , NF one-by-one using the correct
portion of χD and eigenmodes from step 1 (see Fig. 1d for illustration). Each random
field i is expanded using thei-th block χD

i of random vectorχD
(
χ̂D

)
and theNvar

eigenmodes from step (1):
Hi = Φu

i (Λu
i )

1/2 χD
i (16)

6. The last step is the transformation of standardized underlying Gaussian random fields
i = 1, 2, . . . , NF into non-Gaussian via Eq. (13).

One randomly chosen realization of the three fields is plotted in Fig. 2a,b and c. In the
same figure it can be seen how the cross correlation of fields influences the shape similarity of
corresponding realizations. Fig. 2d illustrates the typical plot of the mean and variance profiles
of the field over the target domainΩ. Such a plot serves as visual check for the accuracy of
simulations of fields.

In the procedure, we have made a certain simplification of theconsistent approach described
above, so it is important to assess the error of the approximation. Assume that the distribution
of the underlying Gaussian random field is simulated correctly. Then the non-Gaussian field
obtained by the memoryless transformation has no error in the marginal distributions. The only
error can arise is in the correlation structure of the fields.Obviously, every field alone has a
correct autocorrelation structure, because it is expandedusing independent Gaussian variables
via orthogonal transformation of correct correlation matrices. Let us now take a look at the
cross-correlations obtained with the suggested approach.
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The simulation of the all nodal point values of all fields (step 5) can be written simply as:

H = ΦE
(
ΛE

)1/2
χD (17)

whereΦE andΛE are the eigenvector and eigenvalue matrices of a (block-diagonal) correlation
matrix E that is constructed as follows. MatrixE consists of diagonal blocksFi,i

uu; all off-
diagonal blocks are zero matrices. Therefore, the eigenvalue [eigenvector]ΛE [ΦE] matrices
have the matricesΛu

i [Φu
i ] on the diagonal blocks and zeros elsewhere. By substituting Eq. (11)

into Eq. (17) we obtain the fields in terms of transformation of independent variablesξ:

H = ΦE
(
ΛE

)1/2
ΦD

(
ΛD

)1/2︸ ︷︷ ︸
ΨF

ξ = ΨF ξ (18)

Therefore, the resulting full (block) correlation matrix can be computed asF′ = ΨF
[
ΨF

]T
:

F′ = ΦE · (ΛE
)1/2

ΦD · (ΛD
)1/2[

ΦE · (ΛE
)1/2

ΦD · (ΛD
)1/2

]T
(19)

= ΦE
(
ΛE

)1/2 ·D · (ΛE
)1/2 [

ΦE
]T

whereD = ΦD · (ΛD
)1/2 · (ΛD

)1/2 [
ΦD

]T · By this construction, theF′ matrix can be written
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in square blocks (each of orderN): F′ =



H1 . . . Hj . . . HNF

H1 F′1,1 . . . F′1,j . . . F′1,NF

...
... . . .

...
...

...
Hi F′i,1 . . . F′i,j

... F′i,NF

...
... . . .

...
. . .

...
HNF

F′NF ,1
. . . F′NF ,j

. . . F′1,NF

 (20)

Of course, the matrix is symmetric as a whole, but the blocks are not symmetric in general.
Using Eq. (19), each blocki, j can be written as

F′i,j = Ci,j Φu
i (Λu

i )
1/2︸ ︷︷ ︸

Ψu
i

(
Λu
j

)1/2 [
Φu
j

]T︸ ︷︷ ︸
[Ψu

j ]
T

(21)

TheF′ matrix (consisting of blocksF′i,j = Ci,jΨu
i [Ψ

u
j ]
T ) represents a good approximation

of F in most cases (see Vořechovský (2008) for a numerical example with an estimation of
error). The diagonal blocks are equal to the autocorrelation of each fieldF′i,i = Fi

uu. The
off-diagonal blocksF′i,j , in a certain sense, inherit a combination of the autocorrelations of the
i-th andj-th random field (a product of the eigenmodes of both). Note that if a pair of fieldsi, j
follow an identical autocorrelation structure, the corresponding cross-correlation block is just a
Ci,j multiple of it (compare to Eq. 8).

The F′ can be computed and compared toF before performing any simulations. If the
difference (cross correlation errors) is not acceptable for the analyst and he wants to return to
the consistent procedure employing the correct Nataf transformation forF in the orthogonal
transformation via Eq. (12), we recommend to use Eq. (18) to find a very good approximation
of the eigenmodes ofF needed in Eq. (12). The eigenmodes can be refined iteratively.

5. Conclusions

The main result of this paper is the utilization of the spectral properties (eigen-properties)
of defined block correlation matrices. These can be advantageously utilized for the simulation
of multivariate stochastic fields with a simple cross correlation structure and a common distri-
bution of components. If all fields share the same distribution shape, the decomposition of the
autocovariance structure is done only once for all univariate fields. For Gaussian vector ran-
dom fields, the resulting distribution and correlation properties are correct. For non-Gaussian
fields the autocorrelation structure is correct for all fields, but taking full advantage of the com-
putational simplification brings about small errors in cross correlations. These errors can be
predicted without any simulations. The reduction of computational effort is often significant.
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