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Summary: In this paper it is considered an iterative learning control algorithm for
trajectory tracking of robots with unknown parameters, as masses of links or inertial
momentums etc. The control schemes are based on using of a proportional derivative
feedback , for which an iterative term is added to cope with the unknown parameters
and disturbances. The control design is simple in the sense that only requirements
on the PD and learning gains are the positive definiteness considerations. Arbitrary
bounds of the robot parameters are not needed. The number of iterative variables
in common algorithms are equal to the number of control inputs, but in this paper
this one are defalcated only on two.

1. Introduction

Researchers and industrials use classical linear controllers as PD or PID ones in control of
robot manipulators. The reason is the sake of implementation simplicity. It is well known a
PD controller with gravity compensation is globally asymptotically stable. This condition is
not easy to satisfy, because the gravity influences depend on unknown parameters, for example
time-varying payloads etc.

Without the gravity compensation the PD control leads to a steady-state error. This error
can be reduced by increasing the proportional and derivative gains or by implementation an
integral gain in feedback. Although for PD control with gravity compensation was proven a
global asymptotic stability for PID control only local asymptotic stability was proven .

2. Description of the problem

It is well known that the rigid manipulator dynamics can be described in a form

M(q)q̈ + C(q, q̇)q̇ + g(q) = u+ d (1)

where q ∈ Rn, q̇ ∈ Rn, q̈ ∈ Rn are the joint position, joint velocity and joint acceleration,
respectively, n represents the number of degrees-freedom; M(q) ∈ Rn×n is the (symmetric and
positive definite) inertia matrix; C(q, q̇) ∈ Rn×n is in a form

C(q, q̇) =
1
2
Ṁ(q) + S(q, q̇) +M0 (2)
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where S(q, q̇) is skew symmetric, so that xT S(q, q̇)x = 0 for ∀X ∈ Rn, M0 is the non-
negative definite matrix respectively dampnig factors; g(q) ∈ Rn is the vector resulting from
the gravitational forces (the gradient of a potential energy).

Here u ∈ Rn represents the control input vector containing the torques and forces applied
at each robot joint or currents or voltages on actuators, respectively; d ∈ Rn is the vector
corresponding external disturbances and unmodeled dynamics. We suppose that d = d(t) is
bounded and integrable on [0, T ].

Let N = {1, 2, 3, . . .} and N0 = {0, 1, 2, . . .}. The learning will be realized in steps, that we
denote by k ∈ N the motion trajectory in the step k will be qk, or qk(t) if we want to highlight
the fact, that this one depends on time t. Similarly we denote

Mk = M (qk) ,

Ck = C (qk, q̇k) ,

gk = g(qk),

ek = q∗ − qk is the trajectory error,
ėk = q̇∗ − q̇k is the velocity error,

where
q∗ = q∗ (t) is the desired trajectory of the robot motion (end effector motion) and
qk = qk (t) is the actual trajectory of time t in the step k.

The curves q∗ (t), qk (t) must satisfy the equation (1) so we suppose, that their first and
second derivatives q̇∗, q̈∗, q̇k, q̈k exist and are continuous. Assuming the joint positions and joint
velocities are available for feedback, we want to design a control law uk = uk (t) that ensures
the boundedness of qk(t) for ∀t ∈ [0, T ] ,∀k ∈ N and the convergence of qk (t) to q∗ (t) for all
0 ≤ t ≤ T , where k →∞.

Let the time interval [0, T ] = {t ∈ R; 0 ≤ t ≤ T} be fixed. In this paper, we shall use Lpe

norms:

‖f (t)‖pe =

(∫ t

0
‖f(τ)‖p dτ

)1/p

for 1 ≤ p ≤ ∞
‖f (t)‖∞e = sup

0≤τ≤t
‖f(τ)‖

where ‖f (t)‖ denotes arbitrary norm of f (t), and t ∈ [0, T ]. We define f ∈ Lpe iff ‖f‖pe exits
and is finite. The matrices M(q), C(q, q̇) and vector g(q) are continuous with respect to their
variables. We suppose, that there are constants kc, kg, such that

‖C(q, q̇)‖ ≤ kc. ‖q̇‖ and ‖g(q)‖ ≤ kg

for ∀t ∈ [0, T ] and arbitrary q = q (t) that suits equation (1). These constants are unknown.
In every step the solution start with the same initial condition

qk (0) = 0

q̇k (0) = 0
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for every k ∈ N0.
Let us denote

sign (ėk) =
(
sign

(
ė1k

)
, sign

(
ė2k

)
, . . . , sign (ėn

k)
)T

for the vector

ėk =
(
ė1k, ė

2
k, . . . , ė

n
k

)
where ėi

k = ėi
k (t) is the i-component of the vector ėk in the step k.

Theorem
Consider the system (1) with the overhand defined presumptions.
Let the control law is defined

uk (t) = Aek(t) +Bėk + ε(ėk)Ẑk(t) (3)

with
Ẑk(t) = Ẑk−1(t) + ΓεT (ėk)ėk(t) (4)

where Ẑ0(t) = 0. Let the matrices A, B ∈ Rn×n and Γ ∈ R2×2 be symmetric positive definite,
the matrix ε is defined as the block matrix

εk = ε(ėk) = [ėk, sign(ėk)] (5)

Then ek (t)→ 0 and ėk (t)→ 0 as k →∞ for every t ∈ [0, T ] and moreover ek (t) , ėk (t) and
uk (t) are member of Lpe for all k ∈ N0 and every 1 ≤ p ≤ ∞.

Proof.
From our presumption follows that there is γ, such that ‖Mkq̈∗ − dk‖ ≤ γ. Let us define

Vk =
1
2
eT

k Aek +
1
2
ėT

k Mkėk, (6)

Wk = Vk +
1
2

∫ 0

t

Z̃T
k Γ

−1Z̃kdτ, (7)

With Z̃k (t) = Z−Ẑk (t), where Z = (α, β)T , Z̃ ∈ R2 and α,β are unknown parameters defined
in the following derivation

ėT
k uk = ėk (Mkq̈∗ + Ckq̇∗ + gk − dk) ≤ ‖ėk‖ . (γ + ‖Ck‖ . ‖q̇∗‖+ ‖gk‖)

≤ ‖ėk‖ .
(
γ + kg + kc ‖ėk‖ ‖q̇∗‖+ kc ‖q̇∗‖2

)
Since q̇∗, as a function of t, is bounded on [0, T ]

ėT
k uk ≤ kc ‖ėk‖2 · ‖q̇∗‖+ ‖ėk‖ ·

(
γ + kg + kc ‖q̇∗‖2

) ≤ ‖ėk‖2 · α+ ‖ėk‖ · β =
= ėT

k · α · ėk + ėT
k · β · sign (ėk) = ėT

k · ε (ėk) · Z,

so we have
ėT

k (Mkq̈∗ + Ckq̇∗ + gk − dk) ≤ ėT
k · εk.Z, (8)
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where
α = kc · sup

0≤t≤T
|q̇∗ (t)| , β = γ + kg + kc · sup

0≤t≤T
|q̇∗|2

Let us compute V̇k =
dVk

dt

V̇k = ėT
k

(
Mkëk +

1
2
Ṁkėk + Aek

)
= ėT

k

[
Mkq̈∗ +

1
2
Ṁkq̇∗ + Aek −

(
Mkq̈k +

1
2
Ṁkq̇k

)]
.

If we use (1) then

V̇k = ėT
k

[
Mkq̈∗ +

1
2
Ṁkq̇∗ + Aek + Skq̇k + gk +M0q̇k − τk − dk

]
= ėT

k [Mkq̈∗ + Ckq̇∗ + gk + Aek − τk − dk]− ėT
k Skėk − ėT

k M0ėk

The matrix Sk is skew-symmetric, and if we use (8) we can obtain

V̇k ≤ ėT
k (εk.Z + Aek − τk −M0ėk) (9)

By substitution (3) into (9) we get

V̇k ≤ ėT
k

[
εk

(
Z − Ẑk

)
− (B +M0) ėk

]
(10)

Because Vk (0) = Vk (t) |t=0 = 0, we can derive from (10) by integration

Vk ≤
∫ t

0
ėT

k

(
εkZ̃k − (B +M0) ėk

)
dτ (11)

The reader can persuade of

Z̃T
k · Γ−1Z̃k − Z̃T

k−1 · Γ−1 · Z̃k−1 = −2ΔẐT
k · Γ−1Z̃k −ΔẐT

k · Γ−1 ·ΔẐk (12)

where ΔẐk = Ẑk − Ẑk−1. By using (4),(11) and (12) we obtain

ΔWk = Wk−Wk−1 = Vk−Vk−1−
∫ t

0

(
1
2
ΔẐT

k · Γ−1 · Ẑk +ΔẐT
k · Γ−1 · Z̃k

)
dτ = −Vk−1+

+
∫ t

0

[
ėT

k

(
εkZ̃k − (M0 +B) ėk

)
− 1
2

(
ΓεT

k ėk

)T
Γ−1 · ΓεT

k · ėk −
(
ΓεT

k · ėk

)T
Γ−1Z̃k

]
dτ

and so

ΔWk ≤ −Vk−1 −
∫ t

0
ėT

k ·
(

M0 +B +
1
2
εk · Γ · εT

k

)
· ėkdτ ≤ 0 (13)

The function in the integral is positive semidefinite, hence

ΔWk ≤ −Vk−1 ≤ 0 (14)

From (14) follows
Wk ≤ Wk−1 for k = 1, 2, . . .
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The sequence{Wk}∞k=0is non-increasung, therefore if we shall prove that W0 = W0 (t) is
bounded on [0, T ] we can derive the consequences ė → 0 and ek → 0 as k →∞, as follows.

k−1∑
j=0

Vj ≤ −
k−1∑
j=0

ΔWj = −
k∑

i=1

ΔWi =
k∑

i=1

(Wi−1 −Wi) =W0 −Wk ≤ W0

that is,
k−1∑
j=0

Vj ≤ W0 (15)

From (15) and (6) follows
k−1∑
j=0

ėT
j ·Mj · ėj +

k−1∑
j=0

eT
j · A · ej ≤ 2W0 (16)

and from (16)
∞∑
i=0

ėT
i Miėi ≤ 2W0 (17)

∞∑
i=0

eT
i Aei ≤ 2W0. (18)

These series (17) and (18) are convergent, hence

ėT
i Miėi → 0 and eT

i Aei → 0 (19)

as i →∞ for t ∈ [0, T ]. But Mi is regular, bounded positive definite and symmetric, hence

0 < ėT
i ·Mi · ėi for ėi �= 0,

so from (19) follows that

ėi → 0 as i →∞ for ∀t ∈ [0, t] .
Similarly follows

ei → 0 as i →∞ for t ∈ [0, T ] .
So ei, ėi ∈ Lpe for p = ∞. But ei (t) , ėi (t) are continuous on compact interval [0, T ], so for
arbitrary 1 ≤ p < ∞ is ∫ T

0

∣∣ėi
∣∣p dτ < ∞ (20)

and ∫ T

0

∣∣ei
∣∣p dτ < ∞, (21)

so ėi, ei ∈ Lpe for 1 ≤ p ≤ ∞.
It remains to prove W0 (t) is bounded on [0, T ].

W0 = V0 +
1
2

∫ t

0
Z̃T
0 Γ

−1Z̃0dτ (22)

If we define Ẑ0 (t) = 0, then Z̃0 = Z − Ẑ0 (t) = Z = (α, β)T The first part is bounded because
every solution of equation (1) is bounded. The integral part is bounded too, because it is only a
linear function of time on the interval 0 ≤ t ≤ T , T is fixed, hence we see W0 (t) < ∞. From
(4) follows Ẑk ∈ Lpe for all k ∈ N0 and from (5) and (3) follows uk (t) ∈ Lpe for all k ∈ N0.
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