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Summary: The purpose of this paper is to establish variational principles for the
mechanical behavior of two-phase random elastic lattices. By restricting the atten-
tion to the systems characterized by second-order statistics, the variational bounds
on the stored energy of the Hashin-Shtrikman-Willis type are established using ba-
sic tools of structural statics and linear algebra. Accuracy of the improved bounds
is verified against elementary estimates as well as detailed Monte-Carlo simula-
tions. Finally, selected numerical results related to the accuracy of the bounds are
presented.

1. Introduction

Discrete material models, representing a material as a network of particles interacting via
inter-particle potentials, have received a steadily increasing attention in the fields of theoretical,
computational and applied materials science in the last decade, see, e.g., reviews by Alava et al.
(2006); Blanc et al. (2007) and references therein. From the engineering point of view, the in-
terest has been nourished by the possibility to address, in a conceptually simple framework, the
interplay among the intrinsic material heterogeneity, discreteness and randomness on different
levels of resolution.

In the present paper, we address in detail a specific problem related to mechanics of random
discrete media, namely the stored energy estimates for finite two-component lattices with a
fixed geometry and the heterogeneity distribution characterized in the sense of the second-order
spatial statistics. Variational bounds and estimates are established following recent extensions
of the classical Hashin-Shtrikman-Willis (HSW) variational principles (Hashin and Shtrikman,
1962; Willis, 1977) to finite-sized random composite bodies due to Luciano and Willis (2005,
2006). Apart from the theoretical interest in application of HSW principles to discrete systems,
the major reason for focusing on the global energy instead of local stress- or strain-related quan-
tities is the fact that, when combined with recent advances in variational models of complete
damage (Bouchitté et al., 2008; Mielke et al., 2007), it provides an essential ingredient to the
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development of rational non-local damage mechanics of discrete lattices to be reported sepa-
rately. Moreover, the insights obtained when analyzing the discrete case can provide additional
impulse to further advances in damage mechanics of continuous media and interfaces.

The rest of the paper is organized as follows. In Section 2., the relevant steps of the prob-
lem definition are specified for both deterministic and randomized settings. The energetic
bounds and estimates are derived in Section 3. closely following the procedure proposed re-
cently by Luciano and Willis (2005, 2006) for the Finite Element (FE)-discretized HSW prin-
ciples. In Section 4., results of a pilot numerical study are presented to assess the accuracy and
limitation of the bounds. Finally, Section 5. collects concluding remarks and future extensions
of the method.

2. Problem setup

The current Section is devoted to the problem statement, starting with a brief summary of struc-
tural statics followed by specification of the stochastic framework and quantities of interest.
The standard notation and results of linear algebra are employed (Horn and Johnson, 1990),
with a and a and A denoting a scalar quantity, a vector (colum matrix) and a generic matrix, re-
spectively. Moreover, the matrix formalism developed in Jirásek and Bažant (2001) for general
discrete structures is systematically adopted.

2.1. Overview of discrete media mechanics

Consider a discrete structure consisting of Nn nodes with coordinates xi ∈ Rd, i = {1, 2, . . . , Nn}
and d ∈ {2, 3} connected with Ne discrete elements. On the level of a single element e ∈
{1, 2, . . . , Ne}, the generalized kinematic equations assume the form

ee = Bede, (1)

where ee ∈ RNs is the vector of generalized strains, vector de ∈ R2Nd stores the Nd generalized
displacements at both element nodes and Be ∈ RNs×2Nd denotes the element kinematic matrix.
The corresponding generalized element stresses se ∈ RNs then follow from

se = Deee (2)

with De ∈ RNs×Ns denoting a positive definite matrix of generalized material stiffness. On the
structural level, the relations (1) and (2) attain the form

e = Bd, s = De,

where, e.g., B ∈ RNeNs×NnNd and d ∈ RNnNd stand for the global kinematic matrix and
displacement vector defined as

B =
Ne

A
e=1

Be, d =
Ne

A
e=1

de, (3)

with the symbol A representing the assembly operation, cf. (Jirásek and Bažant, 2001).
In order to specify kinematical constraints on the structure, we partition the problem degrees

of freedom (DOFs) into two sets

c ∪ u = {1, 2, . . . , NnNd}, c ∩ u = ∅, ker (:uB) = {0}, (4)
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where c and u collects the known (constrained) and unknown DOFs, respectively, and the last
condition in Eq. (4) enforces the elimination of rigid-body modes. When subjecting the struc-
ture to an additional nodal load uf ∈ R|u| acting on free DOFs, the unknown displacements ud
can be found by solving an unconstrained quadratic optimization problem

ud = arg minbd∈R|u|
E(d̂), (5)

where the globally stored energy function E : R|u| → R is provided by

E(d̂) = 1
2

[
d̂T cdT

] [
uuK ucK
cuK ccK

] [
d̂
cd

]
− d̂Tuf , (6)

with, for example, ucK = u:BTD:cB ∈ R|u|×|c| being a corresponding sub-matrix of the
global stiffness matrix K = BTDB. The symbol arg min appearing in Eq. (5) denotes the
minimizer of the objective function verifying

E(ud) ≤ E(d̂) ∀d̂ ∈ R|u|, (7)

where the equality is attained only for the test displacement d̂ coinciding with the true solution
due to positive definiteness of uuK. The optimality conditions for ud then yield the global
equilibrium equations in the form

uuKud = uf − ucKcd. (8)

2.2. Stochastic setting

We now proceed with introduction of a suitable framework for binary random discrete media,
i.e. structures in which every element can be found in two distinct states r ∈ {1, 2}. Due
to the discrete nature of the problem at hand, the ensemble space S collecting all structural
configurations is finite-dimensional and as such can be enumerated using an index α,

α ∈ S =
{
1, 2, . . . , 2Ne

}
. (9)

The complete statistical characterization of the discrete stochastic system is then simply pro-
vided by attaching probabilities μ(α) to individual configurations α stored in the probability
distribution vector

μ ∈ Δ =

⎧⎨⎩μ̂ ∈ R|S|, μ̂(α) ≥ 0 ∀α ∈ S,

|S|∑
α=1

μ̂(α) = 1

⎫⎬⎭ . (10)

The ensemble average of a configuration-dependent quantity f(α) for a given probability dis-
tribution μ ∈ Δ is defined as

〈f〉μ =

|S|∑
α=1

f(α)μ(α). (11)

Of a particular importance is a state characteristic vector χ(r)(α) defined via

χ(r)
e (α) =

{
1 if element e is in state r for configuration α,
0 otherwise, (12)

Zeman J., Peerlings R.H.J., Geers M.G.D. #144

1505



quantifying the local distribution of individual states in a given configuration α. For the current
case, χ(r)(α) can be explicitly related to α by employing the identities

χ(1)(α) = (α− 1)B, χ(1)(α) + χ(2)(α) = 1, (13)

where nB provides the value of a natural number n in the binary notation using Ne digits,
see Figure 1 for an illustration.

Following the analogy with quantification of spatial statistics of random heterogeneous me-
dia, e.g. (Torquato, 2002), we introduce a Ne×Ne two-unit probability matrix related to a given
probability distribution μ in the form

P (rs) =
Ne∑

α=1

χ(r)(α)χ(s)(α)Tμ(α) =
〈
χ(r)χ(s)T

〉
μ

, (14)

with an individual entry P
(rs)
ij storing the probability of states r and s being assigned to elements

i and j (note that the explicit dependence on μ is suppressed for the sake of brevity). Note that
due to binary character of the problem, it is sufficient to concentrate on the statistics P (11) only.

2.3. Statics of two-phase random lattices

When assigning a specific material properties to each state r, the previously introduced frame-
work can be readily adopted to two-phase elastic heterogeneous lattices. In particular, the
configuration-dependent material stiffness matrix on the element level, De(α), yields

De(α) =
2∑

r=1

χ(r)
e (α)D(r)

e , (15)

where D(r)
e denote positive-definite material stiffness matrices of individual states. On the

global level, the stiffness distribution is characterized by

D(α) =
Ne

A
e=1

De(α) =
2∑

r=1

(
Ne

A
e=1

χ(r)
e (α)D(r)

e

)
=

2∑
r=1

χ(r) •D(r), (16)

where a •A denotes a block Hadamard-like product implementing the assembly operation.
Consider now a response of a discrete structure with a stochastic configuration-dependent

material stiffness matrix D(α) subject to deterministic loading specified in terms of prescribed

α = 1 α = 2
1 2 1 2

χ (1)(1) = [0,0]T,χ (2)(1) = [1,1]T χ(1)(2) = [0,1]T,χ (2)(2) = [1,0]T

α = 3 α = 4
1 2 1 2

χ (1)(3) = [1,0]T,χ (2)(3) = [0,1]T χ(1)(4) = [1,1]T,χ (2)(4) = [0,0]T

Figure 1: Ensemble space and state characteristic vectors for a two-element structure; state
r = 1 corresponds to black element, r = 2 is indicated by gray color.

Engineering Mechanics 2009, Svratka, Czech Republic, May 11 – 14

1506



displacements cd and generalized nodal forces uf . For each configuration α ∈ S, the energy
minimizer is defined as

ud(α) = arg minbd∈R|u|
E(d̂; α), (17)

with the stored energy function introduced analogously to (6):

E(d̂; α) = 1
2

[
d̂T cdT

] [
uuK(α) ucK(α)
cuK(α) ccK(α)

] [
d̂
cd

]
− d̂Tu

f . (18)

The ensemble average of the optimal energy for a given probability distribution μ is a weighted
sum

〈E(ud)〉μ =

|S|∑
α=1

E (ud(α)) μ(α). (19)

The full specification of probability distribution is, however, rarely available. Therefore, we
rely on a partial statistical characterization in terms of two-element probabilities and attempt to
establish energetic bounds in the form

H−(P (11)) ≤ 〈E(ud)〉bμ ≤ H+(P (11)) ∀μ̂ ∈ C(P (11)), (20)

reflecting the limited probabilistic characterization.

3. Hashin-Shtrikman-Willis estimates

Following the conceptual lead of Hashin and Shtrikman (1962), we introduce a reference deter-
ministic structure characterized by a positive-definite generalized material stiffness matrix D(0)

and consider a realization-dependent quadratic form

1
2

[
τ̂T êT

] ⎡⎣ (
D(0) −D(α)

)−1

I

I
(
D(0) −D(α)

)
⎤⎦[

τ̂
ê

]
, (21)

where ê ∈ RNeNs stores an arbitrary strain vector and auxiliary variable τ̂ ∈ RNeNs will be
commented on later. By virtue of the Schur complement lemma, cf. (Horn and Johnson, 1990,
Section 7.7.6), the form (21) is positive-semidefinite as long as (D(0) − D(α)) is positive
definite, leading to a bound

1
2
êTD(α)ê ≤ τ̂Tê− 1

2
τ̂T(D(α)−D(0))−1τ̂ + 1

2
êTD(0)ê, (22)

with the equality reserved for the value

τ̃ (α) =
(
D(α)−D(0)

)
ê = ŝ(α)−D(0)ê (23)

maximizing the right hand side of (22) for a given realization α and test strain field ê. The
variable τ̂ therefore corresponds to a generalized polarization stress associated with the refer-
ence stiffness matrix D(0) and generalized strain ê (Hashin and Shtrikman, 1962). Note that
when the optimization with respect to τ̂ is performed exactly, attainment of equality in (23) is
independent of the reference media. In the opposite case the D(0) should be chosen as close to
D(r) while maintaining the positive semi-definiteness of (D(r) −D(0)).
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Introducing the inequality (22) into the original energy function (18) yields a variational
characterization of the true displacement-polarization pair in the form

(ud(α), τ (α)) = arg minbd∈R|u|
maxbτ∈RNeNs

U(d̂, τ̂ ; α), (24)

where the Hashin-Shtrikman energy function is defined as

U(d̂, τ̂ ; α) = E(0)(d̂) + τ̂Tê + 1
2
τ̂T(D(0) −D(α))−1τ̂ , (25)

with E(0) denoting the energy stored in the reference structure (obtained from Eq. (6) with
D = D(0)) and the kinematically admissible strain obtained from

ê =
[

:uB :cB
] [

d̂
cd

]
. (26)

A completely analogous procedure can be executed when selecting the reference media such
that (D(α)−D(0)) becomes negative-definite, leading to a lower estimate of the stored energy.
For an indefinite (D(α) − D(0)), a variational estimate of the stored energy is obtained; see
e.g. Luciano and Willis (2006) for additional discussion. Therefore, considering a generic ref-
erence media and upon exchanging the order of optimization, the problem (24) is generalized
to

(ud(α), τ (α)) = arg statbτ∈RNeNs

(
minbd∈R|u|

U(d̂, τ̂ ; α)

)
. (27)

Similarly to Willis (1977), we start from the minimization with respect to kinematical vari-
ables to obtain the optimal displacement vector d̃ for an arbitrary test polarization stress τ̂ . Due
to linearity of the problem, the actual value is expressed as a superposition of two auxiliary
problems [

ud̃
cd

]
=

[
ud(0)

cd

]
+

[
ud̃(1)

0

]
, (28)

where ud(0) denotes the polarization-independent displacement of a reference structure subject
to prescribed displacements cd and nodal forces uf , while ud̃(1) is the displacements due to a
polarization stress τ̂ with cd = 0 and uf = 0. The values of both components follow from
equilibrium equations (8):

uuK(0)ud(0) = uf −uc K(0)cd, (29)
uuK(0)ud̃(1) = −u:BTτ̂ . (30)

After resolving the “inner” problem in Eq. (27), we proceed with determination of the opti-
mal polarization. Introducing the solutions of (29) and (30) into the two-variable function (27)
and exploiting the optimality conditions (8) yields, after some manipulations discussed in de-
tail in, e.g. in Willis (1977) and Luciano and Willis (2005), the characterization of the optimal
polarization stresses in the form:

τ (α) = arg statbτ∈RNeNs
H(τ̂ ; α), (31)

with the condensed energy function expressed as

H(τ̂ ; α) = H(0) + τ̂Te(0) − 1
2
τ̂T(D(0) −D(α))−1τ̂ − 1

2
τ̂TΓ(0)τ̂ , (32)
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where H(0) = E(0)(ud(0)) corresponds to a stationary value of the energy stored in the reference
structure, e(0) is the associated generalized strain and Γ(0) is a discrete counterpart of the Green-
function related quantity introduced by Willis (1977) and Luciano and Willis (2005), linking the
kinematical quantities to the polarization stress via

ẽ(1) = :uBud̃(1) = − (:uB) (uuK(u, u))−1 (:uB) Tτ̂ = −Γ(0)τ̂ . (33)

Since no approximation has been introduced so far, the following equality

〈E(ud(α))〉μ = 〈H(τ (α)〉μ (34)

is still valid for an arbitrary probability density vector μ ∈ Δ. With the partial description of
the stochastic system at hand, a specific ansatz for the generalized polarization stresses

τ (α) ≈
2∑

r=1

χ(r)(α) • τ (r), τ̂ (α) ≈
2∑

r=1

χ(r)(α) • τ̂ (r), (35)

is employed to utilize the available second order statistics (14) optimally, cf. (Willis, 1977). The
τ̂ (r) and τ (r) terms in Eq. (35) are realization-independent trial and “true” polarization stresses
related for the r-th phase. The approximations (35) together with the expression for material
stiffness matrix (15) yield a variational statement in the form

〈E(ud(α)〉μ ≶ H(0) +
2∑

r=1

e(0)

(〈
χ(r)

〉
μ
• τ̂ (r)

)
Te(0)

− 1
2

2∑
r=1

τ̂ (r)T

(〈
χ(r)χ(r)T

〉
μ
•

(
D(0) −D(r)

)−1
)

τ̂ (r)

− 1
2

2∑
r=1

2∑
s=1

τ̂ (r)
(〈

χ(r)χ(s)T
〉

μ
• Γ(0)

)
τ̂ (s), (36)

where the actual status of the right hand side depends again on the choice of reference material
stiffness matrix D(0).

By performing optimization with respect to deterministic phase polarization fields and im-
posing the constraint μ ∈ C(P (11)) finally delivers the searched energetic bounds and estimates:

H±(P (11)) = H(0) +
1

2

2∑
r=1

e(0)
T

(
p(r) • τ

(r)
±

)
, (37)

where the optimal phase polarization stresses follows from the system of linear equations:(
P (rr) •

(
D(0) −D(r)

)−1
)

τ
(r)
± +

2∑
s=1

(
P (rs) • Γ(0)

)
τ

(s)
± = p(r) • e(0). (38)

4. Illustrative examples

Although the theory presented in previous sections is applicable to generic 2D or 3D discrete
structures, basic features of the method are illustrated for a planar truss system in the small-
strain regime. Within this framework, the generalized displacement vector and can be found
in (Jirásek and Bažant, 2001, Appendix A).
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A regular lattice structure appearing in Figure 2 is employed as a benchmark problem. The
prescribed boundary conditions include uniform loading and bending scenarios, imposed either
using nodal forces (force control (FC) case) or by prescribed nodal displacements (displacement
control (DC) programme). In addition, a dimensionless parameter in the form

ζ(P (11)) =
H(P (11))−H(0)

H(1)−H(0)
(39)

is introduced to aid visualization of the results.
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Figure 2: Scheme of the lattice structure

The results for the second-order bounds presented hereafter are accompanied with the ele-
mentary counterparts of the Voigt and Reuss type, determined for a deterministic problem with
spatially variable Young moduli in the form

EV
e (p(1)

e ) = p(1)
e E(1)

e + (1− p(1)
e )E(2)

e , ER
e (p(1)

e ) =

(
p

(1)
e

E
(1)
e

+
1− p

(1)
e

E
(2)
e

)−1

. (40)

Finally, data obtained by direct Monte-Carlo (MC) simulations with N = 10, 000 realizations
are included as a reference value.

A binary system with the first phase assigned to each element independently with a proba-
bility φ is investigated. The associated second-order statistics then becomes

P
(11)
ij =

{
φ if i = j,
φ2 otherwise. (41)

The contrast of phase stiffnesses is set to E(2) : E(1) = 10 : 1.
Figure 3 gathers the stored energy plots for all the considered loading scenarios. In all

cases, the HSW bounds substantially narrow the domain defined by the first-order bounds while
preserving the concave/convex dependence of the mean stored energy on the φ parameter for the
displacement- or force-driven loads, respectively. The increase in accuracy due to considering
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Figure 3: Energetics of random truss model; (a)–(b) uniform loading, (c)–(d) bending.

non-local spatial statistics is especially pronounced for small and large values of φ, for which
even the asymptotic behavior seems to be exactly reproduced by the lower bound for the force-
controlled conditions or upper bound in case of kinematically constrained case. Note that the
match between the HSW predictions and the results of the MC simulations in the whole range of
probabilities φ can be further increased by an appropriate choice of the reference stiffness D(0).
Nevertheless, the optimal value is highly problem-specific, which somehow limits applicability
of the variational estimates, see (Sharif-Khodaei and Zeman, 2008) for further discussion.

5. Conclusions

In this work, the variational bounds and estimates of the HSW-type for two-phase random
structures were derived and verified against the results of direct MC simulations. The most
important findings can be summarized as follows:

• when applied to discrete structures, the derivation of the HSW principles becomes rather
straightforward and requires only elements of matrix structural analysis and linear alge-
bra,

• the variational framework naturally incorporates the general statistically non-uniform sys-
tems,

• the second-order bounds provide a computationally feasible alternative to direct MC sim-
ulations.
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