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Summary: The paper deals with the approach to modelling and optimization of 
turbine generators whose bodies have primarily non-symetrical geometry and 
stiffnesses in two perpendicular planes. To equalize these stiffnesses it is neces-
sary to perform so called Lafoon’s slits to the generator body. Using conclusions 
from fracture mechanics we can simulate rotor behaviour respecting slits and de-
termine their optimal depth.   

  

1. Introduction  
The different stiffnesses of the turbine generator body in two perpedicular planes paralell with 
generator axis can cause the parametric resonances and than the rise of unstability. The very 
frequently used way to avoid such unpleasant phenomena presents Lafoon’s slits. Meaning of 
this slits can be understood as an instrument for proper stiffness decreasing in corresponding 
plane and equalizing both stiffnesses. Scheme of one turbine generator is depicted in fig. 1 

 

 

 

Figure 1. Scheme of the turbine generator 
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2. Modelling of Lafoon's slits by means of crack finite element 

The scheme of the cracked finite element is depicted in fig. 2 

 

 

 

 

 

 

 

 

Figure 2. Scheme of cracked finite element 

 

One of the possibilities to obtain the stiffness matrix of the element uses the stiffness influ-
ence coefficients. Deformation potential energy of the intact element can be expressed in form 
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 where ( )ξM  is bending moment and ( )ξξI  means cross-sectional moment of inertia. The 

relation expressing energy opening crack  can be obtained from the fracture mechanics ex-
perience in form (Kuruc 2008, Dupal 2001)   
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where ζS ,  ζI and A  means moment of area, cross-sectional moment of inertia and area, re-

spectively. Analogous quantities corresponding to the crack area are marked by tilda.  

 

 

 

 

 

 

 

 

 

 

Figure 3. Cross-section of generator 



Using Castigliano's rule e.g. 
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we can come to the time dependent periodical stiffness matrix of rotor finite element in form 
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where )(tT  is transformation matrix, ζK and ηK are stiffness matrices  expressed in rotating 

coordinate system ξηζ  corresponding to the bending in plane ξη and ξζ , respectively. The 

matrix TK is coordinate invariant part corresponding to longitudinal and torsional deformati-

ons. The matrix )(tCR
eK corresponds to the order of generalized coordinates as follows: 
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The order of element displacements should be finally rearranged. Meaning of the individual 
symbols follows from the fig. 4  

 

Figure 4. Element generalized displacements 

3. Equation of motion 

The special crack finite element matrices were developed for modelling of slits. Supposing 
the permanently open cracks we can come to the linear equation of motion with periodically 
time dependent matrices  (1) 
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Individual matrices have meaning as follows: ( ) nnt ,RT ∈ -transformation matrix, 

( ) ( ) nnT tt ,RMTT ∈ -mass matrix, nn,RG ∈ -gyroscopic matrix, ( ) ( ) nn
V

T tt ,RTKT ∈η -

matrix of proportinal radial damping, ( ) ( ) nn
V

T tt ,RTKΩT ∈η -matrix of proportinal tangential 

damping, nn
SS

,, RBK ∈  -stationary part of stiffness matrix and damping matrix, respective-

ly, ( ) ( ) nnT tt ,RTKT ∈ -stiffness matrix. 

The Floquet’s theory can be used for stability assessment. We can firstly rewrite the eq. (1) 
without excitation into the brief form 
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where meaning of matrices in (2) follows from the comparison (1) and (2). Adding the identi-
ty 
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~~

 (3) 

to (2) we can transfer the original system of the ordinary differencial equations (ODE) of the 
second order to system of the first order in form 

 .)()()()( 0xPxN =− tttt &  (4) 

The matrices in the last equation have form 
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Assuming regularity of ( )tN we can come to 

 ),()()( ttt xAx =&  (6) 

where 

 .)()()( 2,21 nnttt RPNA ∈= −  (7) 

The matrix ( ) ( )Ttt += AA  is time periodical whose period is ωπ /2=T  and ω  is angular 
speed of generator. The measure of instability can be expressed by means of monodromy ma-
trix eigenvalues. In case all the eigenvalues lie inside the unit circle in complex plane (in-
cluded boundary) the system is stable and vice versa. In case of at least one of eigenvalues 
lying outside this circle, the system is unstable. Let introduce the fundamental matrix of solu-
tion starting from independent initial conditions (e.g. identity matrix) 

 [ ].)(, . . . ),(),()( 221 tttt nxxxX =  (8) 

Monodromy matrix corresponds to the fundamental matrix expressed in time T . It means to 
solve the eq.  

 )()()( ttt XAX =& ,    ( ) .0 IX =  (9) 

As a numerical example we can choose the generator of Riga turbine. The model of generator 
is depicted in fig. 5. Lafoon's slits are modelled by cracked finite elements. The dependence 
of maximal absolute value of the monodromy matrix eigenvalue on angular speed of revolu-
tion and depth of slits is depicted in fig. 6. The place corresponding  to the unit absolute value 
of monodromy matrix eigenvalue for all angular speed values presents optimal depth of slits. 



 

 

Figure 5. Model of generator Riga 

 

 

Figure 6. Dependence of the bands of instability of the Riga rotor on the depth of slits 

 

4. Slit depth determination 

One of the ways to the slit depth determination could be understood as an optimization proc-
ess whose objective function will express measure of the difference between eigenfrequencies 
corresponding to the mode shapes of vibration in two perpendicular planes. The objective 
function can have form 

 ,)( ∆λGλ∆Ts =ψ  (10) 

where the vector ∆λ can be written down e.g. in these two ways 
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and the weighting matrix is of diagonal form { }321 ,, gggdiag=G . To obtain the eigenvalues 

in (11) means to solve eigenproblem eq. (1) for ( ) IT =0 . This optimization approach was 
applied retrospectivelly to the five already made up generators by company BRUSH SEM. 
Our results were written down to the last column of the tab. 1.  

 

Table 1. Experimentally and computationally obtained depths of slits 
Slit depth [mm] Rotor 

Experiment M. Balda C. Hoschl I. C. Hoschl II. New approach 

RIGA 104 134,5 114,4 112,6 96,9 

BDAX98 95 129,7 109,1 112,6 92,8 

DAX7 67,95 99,2 86,6 98,7 63,0 

GE9A5 111,5 114,2 86,1 87,8 87,6 

GE7A6 82,6 109,9 85,1 97,8 76,7 

 

5. Coclusion 

As reader can see our results lie more closely to the experimentally determined depths then 
the results obtained by the application of three approaches used by two Czech notable experts. 
In addition these results lie always on the safe side of values. The method of stability assess-
ment was very simplified  and accelerated by the modal reduction. Despite of the fact that the 
system matrices are time dependent the reduction successfully came through by means of 
modal matrix calculated in the initial time .0=t   
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