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Summary: The spatial discretization of continuum by finite element method in-
troduces the dispersion error to numerical solutions of stress wave propagation.
For higher order finite elements there are the optical modes in the spectrum re-
sulting in spurious oscillations of stress and velocity distributions near the sharp
wavefront. In seismology the spectral finite elements appeared recently. Spectral fi-
nite elements are of h-type finite elements, where nodes have special positions along
the elements corresponding to the numerical quadrature schemes, but the displace-
ments along element are approximated by Lagrangian interpolation polynomials.
The Legendre higher order spectral elements are popular due to their small disper-
sion and anisotropy errors. In this paper, the classical and Legendre and Chebyshev
spectral finite elements are tested in one-dimensional wave propagation in an elas-
tic bar.

1. Introduction

The finite element method (FEM) (Hughes, 1983) is often employed to the numerical solu-
tion of wave propagation in complex heterogeneous media. Spatial discretization by FEM can
approximate the solid boundaries, prescribed boundary conditions and complex material be-
haviours. It is known that the spatial and temporal semidiscretization by FEM yields dispersion
errors. These parasitic effects do not exist in ’ideal’ continuum. The dispersion behaviour of
FEM results in elastic wave propagation with different wave speeds and the wave front is thus
distorted. Furthermore, the FE mesh behaves as a frequency filter - higher order frequencies are
not transferred at all.

The theoretical basis of the dispersion analysis FEM for the solution of the hyperbolic partial
differential equation has been laid in (Chin, 1975), where the Gibb’s effect with the connection
of FEM was observed. The oscillations near the wavefront or the stress jump change does
not vanish for the fine-grained mesh. Fourier method as the dispersion analysis tool of the
numerical solution of the hyperbolic partial differential equation is described in (Vichnevetsky
and Bowles, 1982). Very simply and efficient symbolic approach of the complex wavenumber
Fourier analysis of FEM is presented in (Thompson and Pinsky, 1994).
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Krieg (1973) has studied one-dimensional constant strain elements for the numerical solution
of the one-dimensional wave (Helmholtz) equation. In this work, the dependence of the mass
matrix approximation and temporal discretization was studied on the accuracy of the numerical
solution. Belytschko and Mullen (1978) extended their dispersion analysis to higher (quadratic)
order one-dimensional elements. It was shown that an optical branch in the spectrum exists. In
the Brillouin’s book (Brillouin, 1953), the lowest branch is called the acoustic while the higher
branches are known as optical ones. The existence of optical branches causes the presence
of the noise associated with the propagation of discontinuities. In the above mentioned study,
the dispersion analysis revealed the existence ’stopping’ bands in the frequency spectrum of
quadratic elements, where solution in the frequency range decay exponentially. Also, the dis-
persion analysis for Newmark’s method (Newmark, 1959) and for central difference method
(Dokainish and Subbaraj, 1989) together with the consistent and lumped mass matrix was ex-
plained. It was shown that the dispersion curves for both mentioned time numerical schemes
depend on the value of the time integration step. On the basis of this analysis it was recom-
mended, that the Newmark’s method is suitable with consistent mass matrix while the central
difference method with lumped mass matrix.

Holmes and Belytschko (1976) numerically showed, than the different mesh size produces
the interior reflection contributing to propagation of the spurious waves. In their works (Bažant,
1978; Bažant and Celep, 1982) have analytically analyzed the magnitudes of the spurious re-
flections of this interior reflection. Celep and Bažant (1983) have showed, than the transitional
domain does not absorb the occurrence of the spurious waves. One-dimensional Lagrangian
and Hermitian elements have also been studied by Okrouhlı́k and Höschl (1993). The response
of the one-dimensional constant strain element mesh on the Heaviside loading oscillation have
been solved in (Jiang and Rogers, 1990) and the stress oscillation and propagation of the spu-
rious waves have been described. It has been proved, that in principle the spurious oscillations
can not be removed but only minimized to a certain extent. The stress amplitude of spurious os-
cillations depends only on the number of the finite elements through which the elastic wave has
passed. The effects of mass matrix formulation, time integrations and various combinations on
the dispersion properties of the one-dimensional constant strain element have been presented,
see (Goudreau and Taylor, 1972; Hughes, 1983; Hughes and Tezduyar, 1984). For many finite
element types, their geometries and direct time integration schemes their dispersion properties
are derived and described in many papers. On the other hand, a little attention has been so far
paid to the study of the response of the finite element mesh to a loading by means of Heaviside
step function.

This paper intends to study of the influence of the spatial discretization by finite element
method on the accuracy of the wave propagation problem. The accuracy and dispersion analysis
will be carried out for higher order classical and spectral finite elements (Patera, 1984), (Sprague
and Geers, 2008) employed for the study of one-dimensional elastic wave propagation. Spectral
elements are of h-type formulation with special positions of the nodes. The nodal positions are
chosen in the agreement with employed the quadrature scheme. In this paper, the Legendre and
Chebyshev spectral elements will be studied. The Legendre spectral element has nodal positions
corresponding to the Gauss-Lobatto-Legendre quadrature (GLL), Chebyshev spectral element
is associated with the Gauss-Lobbato-Chebyshev quadrature scheme (GLC) and, of course,
the displacements along the element is approximated by Lagrangian interpolation functions
(Atkinson, 1988). For these shape functions with corresponding quadrature formula, the mass
matrix is evidently diagonal. In the seismology community, the spectral elements are very



popular for their small dispersion errors and marginal anisotropy effects (Cohen, 2002). The
response of the elastic bar on the force loading by Heaviside step function will be studied in
the close form for the continuous time and the stress field will be compared with the analytical
solution (Kolsky and Key, 1963). After the time continuous numerical solution of the shock
wave propagation in the discretized system is found, the results of the spatial dispersion analysis
can be mutually compared and the numerical parasitic effects can be explained. For the shock
loading, the stress and velocity field proves the jump in the wavefront propagated by wave
speed. For this reason, the oscillation near the wavefront in the finite element solution is existing
(Gibb’s effect) and this effect will be investigated. The response of a ’thin’ elastic bar will
be studied by various types of finite element approaches. For the practical FE using for the
wave propagation problems, the error estimation is necessary to accomplish and determine of
the properties of the numerical solution and further, investigate the recommendation on the
’reliable’ numerical model.

2. Problem formulation

The analytical solution of the response a one-dimensional ’thin’ bar (Fig.1) under the loading
will be derived for following assumptions: small strains, small displacements and rotations and
linear constitutive equation in the form of Hooke’s law. The transverse contraction of a cross-
section of the bar is neglected. The one-dimensional wave equation in elastic solid continuum
has the form, see e.g. (Kolsky and Key, 1963),

Aρ
∂2u

∂t2
= AE

∂2u

∂x2
, (1)

where u(x, t) is axial displacement, x ∈< 0, L > is axial coordinate, L is length of a bar,
t denotes time, ρ is mass density, A is area of a cross-section and E denotes Young’s modulus.
The wave speed in the bar is

c0 =
√

E/ρ. (2)

For the solution of (1) the boundary and initial conditions are to be defined. The right-hand
side of the bar is fixed. So, the boundary conditions is are

u(x = L, t) = 0, v(x = L, t) = 0, t ∈< 0,∞). (3)

The initial conditions are defined by

u(x, t = 0) = 0, v(x, t = 0) = 0, x ∈< 0, L >, (4)

where v denotes velocity, e.g. v = du
dt

.
The loading by a force applied at the free end of the bar leads to

F (t) = Aσ(x = 0, t) = AE
∂u(x = 0, t)

∂x
, (5)

where the time dependence of stress σ is given by Heaviside step function H(t) in the form

σ(x = 0, t) = σ0H(t), (6)

where σ0 = F0/A. Heaviside step function H(t) is defined as

H(t < 0) = 0, H(t ≥ 0) = 1. (7)

The properties of Heaviside step function H(t) can see in (Kanwal, 1998).
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Figure 1: One-dimensional bar under force loading.

3. FEM discretization

Consider the finite element approximation of the solution (Hughes, 1983)

ue(ξ) =
p+1∑
i=1

hi(ξ)u
e
i , ξ ∈< −1, 1 > (8)

where h(ξ) are shape functions defined in the local element coordinates ξ, and p is the spectral
order (polynomial order), ue

i are nodal displacements. In matrix formulation we have

ue(ξ) = H(ξ)ue, (9)

where ue denotes local nodal displacement vector for given element.
Spatial discretization by the finite element of elastodynamics problems leads to the ordinary

differential system
Mü + Ku = R. (10)

Here, M is the mass matrix, K the stiffness matrix, R is the time-dependent load vector, and u
and ü contain nodal displacements and accelerations. The element mass and stiffness matrices
are given by

Me =
∫

Le
ρHTH dx (11)

and
Ke =

∫
Le

EBTB dx (12)

where Le denotes the element length, B is the strain-displacement matrix, H stores the dis-
placement interpolation functions hi and integration is carried over the element domain. Global
matrices are assembled in the usual fashion. Mass matrix defined by (11) is called consistent
mass matrix preserving the kinetic energy. The matrices given by (11) and (12) are real, sym-
metrical, their eigenvalues are real and non-negative.

A lot of direct time integration methods are known. The implicit (Subbaraj and Dokainish,
1989) and explicit (Dokainish and Subbaraj, 1989) methods are often used for the numerical
solution in transient elastodynamics. The explicit methods often require the lumped (diagonal)
mass matrix formulation (Hughes, 1983). In this paper, the row-sum method and HRZ scaling
lumped mass algorithms (Hinton, Rock and Zienkiewicz, 1976) is employed.



3.1. Classical finite elements
For classical h-type FE the displacement approximation is realized by Lagrangian interpolation
polynomials in the form (Hughes, 1983)

hi (ξ) =
∏
j 6=i

ξ − ξi

ξj − ξi

, ∀ i, j ∈ {1, 2, . . . , p + 1} , (13)

where nodal positions along the element ξi, i = 1, 2, . . . , p + 1 are chosen uniformly. The basic
property of Lagrangian interpolants as shape functions is following

hi(ξj) = δij, (14)

where δij is Kronecker delta. This concept of FE interpolation produces the C0 continuous
weak solution.

In classical FEM, the integral (11) and (12) are evaluated with Gauss-Legendre quadrature
formula (Irons, 1966) with linear mapping range x ∈ (xj, xj + Le

j), j = 1, 2, . . . , NELEM
to range ξ ∈< −1, 1 >, where the intergation points are the roots of the Legendre polynomial
of a given degree. NELEM is number of finite elements in one-dimensional mesh. Generally,
the quadrature of Gauss type on the range ξ ∈< −1, 1 > is given by∫ 1

−1
f(ξ) dξ =

n∑
i=1

wif(ξi), (15)

where ξi, i = 1, 2, . . . , n are the integration points and wi are the corresponding weights. The
table of the Gauss-Legendre points and corresponding weights is presented in (Atkinson, 1988).

3.2. Legendre spectral finite elements
As it was mentioned, the spectral FE is h-type FE with a special choice of the nodal positions
according to the quadrature formula. For the Legendre spectral FE, the nodal positions are
evaluated at p+1 Gauss-Lobatto-Legendre (GLL) points, such that ξ1 = −1 and ξp+1 = 1, with
the other points being obtained as the roots of the derivative of the Legendre polynomials. GLL
points ξi and the corresponding weight factors wi can be found in (Atkinson, 1988) or (Cohen,
2002). The basic property of the spectral FE is that the mass matrix evaluated by corresponding
quadrature is diagonal. The proof can be found in (14).

3.3. Chebyshev spectral finite elements
The Chebyshev FE is based on the Gauss-Lobatto-Chebyshev (GLC) quadrature, where nodal
positions, also evidently integration points, are given by ξi = − cos (i−1)π

p
, i = 1, 2, . . . , p + 1

and the corresponding weights are identical and equal to wi = 2/(p + 1), see e.g. (Atkinson,
1988).

4. Solution of motion equations

Analytical solution of the motion equations (10) can be found in the close form, where the time
distributions of displacements, velocities, stresses are continuous. The response of the bar
(undamped, nongyroscopic discrete system) under the step jump force loading (Fig.1) prescibed
by equations (10) can be found by the convolution (Duhamel’s) integral (Meirovitch, 1980).



Before the solution itself, the diagonalization of (10) is required. Using modal transformation
we get

u = Vq, (16)

where q is the vector of modal coordinates, the modal matrix V stores the eigenvectors in such
a way V = [Φi], i = 1, 2. . . . , n, n is degrees of freedom of system (10). Corresponding spec-
tral matrix Λ stores the eigenvalues Λ = diag(ω2

i ) computed from the generalized eigenvalue
problem

ω2
i MΦi + KΦi = 0, i = 1, n. (17)

If the spectral and modal matrices are normalized by relationships

VTMV = I, VTKV = Λ, (18)

where I is the unit matrix, the system after the modal transformation (16) is diagonalized and
yields a system of the second order ode’s equations

q̈(t) + Λq(t) = N(t), (19)

where vector N(t) is given by
N(t) = VTF(t). (20)

The equation (19) represents a set of independent ode’s having the form

q̈i = Ni(t), i = 1, 2, . . . , r, (21)
q̈i + ω2

1qi = Ni(t), i = r + 1, r + 2, . . . , N.

where r denotes the number of rigid-body modes (ωi = 0 for i = 1, 2, . . . , r ), in the process, n−
r is the number of elastic modes. The close form solution of (19) can be found by convolution
integral. For the homogeneous initial conditions it yields the solution

qi(t) =
∫ t

0

[∫ τ

0
Ni(η) dη

]
dτ, i = 1, 2, . . . , r, (22)

qi(t) =
1

ωi

∫ t

0
Ni(t− τ) sin ωiτ dτ, i = r + 1, r + 2, . . . , n.

For the configuration given by Fig.1, the time dependence loading vector R is a constant-
value vector for time t ≥ 0

R(t) = [F0, 0, 0, . . . , 0, 0]T , (23)

where the force F0 is applied on the global node u1 for x = 0. If the boundary conditions (3) are
applied, the all eigenvalues are positive. Therefore, the motion in the rigid mode is eliminated.
If the eigenvalue problem (17) is solved for the prescribed boundary conditions (3) and the
eigenfrequencies are sorted in increasing order, then the spectral matrix has the form

Λ = diag
(
ω2

1, ω
2
2, . . . , ω

2
n−1, ω

2
n

)
, n = NELEM − 1. (24)

Of course, from (16) and (23), the components of the vector N(t) is constant-value

N(t) = [N1, N2, . . . , Nn−1, Nn]T (25)



and the convolution integral of (21) can be simply computed by

qi =
1

ωi

∫ t

0
Ni sin ωiτ dτ =

Ni

ωi

(1− cos ωit) , i = 2, 3, . . . , n. (26)

Sequentially, the nodal displacement vector u for given time t is than established by relation-
ship (16), it is in series form. Further, the nodal velocity vector is given by

u̇ = Vq̇, (27)

where
q̇i =

Ni

ωi

sin ωit, i = 2, 3, . . . , n. (28)

And finally, the approximation of stress distribution along the bar is prescribed by means of
the strain-displacement matrix B and Hooke’s law in the form

σ = EBu. (29)

Frequently, the stress values are computed at integration points and consecutively recomputed
to nodes.

5. Dispersion of classical and spectral FE

In work of Thompson and Pinsky (1994), the complex wavenumber dispersion analysis was pre-
sented for the one-dimensional FE. For arbitrary spectral order p, the computational approach
using the symbolic operations is very simple to implement. In the Fourier analysis, the nodal
displacements are prescribed in the form

ui = Ai exp(iωt) exp(ikhxi), (30)

where the discrete wavenumber is the real part of kh and imaginary part of kh has the mean-
ing the attenuation intensity, imaginary unit i =

√
−1 and xi is the nodal position. Next,

the relationship (30) is substituted into (10) and the dispersion relation ω = f(kh) is ob-
tained. In this paper, the dispersion branches are depicted in the half of the first Brillouin’s
zone Re(khLe) ∈< 0, π >, see (Brillouin, 1953).

In Figs. 2 to 6 the dispersion realitions are presented for the classical FE with consistent
and diagonal mass matrix by row-sum method and by HRZ algorithms, respectively, and for
Legendre and Chebyshev spectral FE, where spectral order is p = 1, 2, 3. Note, that the linear
spectral FE corresponds to the classical linear FE with lumped mass matrix.

It can be seen, that the higher classical FE produces smaller dispersion errors in the lower
dispersion branches. The odd spectral order p is recommended due to minimal range of stop-
ping bands. This property of dispersion behaviour is valid for the Legendre FE, simultaneous
diagonal mass matrix as well. On the other side, the dispersion of Chebyshev FE is unsatisfac-
tory, because the diagonal parts of global mass matrix corresponding to the exterior nodes of
elements have double value of the interior node mass coefficients.



Figure 2: Frequency spectrum for linear (p=1) classical FE. Real wavenumbers (on the left),
imaginary wavenumbers (on the right).

Figure 3: Frequency spectrum for quadratic (p=2) classical FE. Real wavenumbers (on the left),
imaginary wavenumbers (on the right).

Figure 4: Frequency spectrum for quadratic (p=2) spectral FE. Real wavenumbers (on the left),
imaginary wavenumbers (on the right).



Figure 5: Frequency spectrum for cubic (p=3) classical FE. Real wavenumbers (on the left),
imaginary wavenumbers (on the right).

Figure 6: Frequency spectrum for quadratic (p=3) spectral FE. Real wavenumbers (on the left),
imaginary wavenumbers (on the right).

6. Fourier spectrum of Heaviside pulse

For the given time distribution of the loading, its spectrum can be determined by Fourier’s
analysis. The amplitude density for the rectangle pulse with amplitude F0 and duration time
t ∈ (0, T ) is prescribed by

A(ω)

πF0T
=

(
2

π2

) ∣∣∣∣∣sin
ωT
2

ωT
π

∣∣∣∣∣ . (31)

This relation for the amplitude density of the rectangle pulse shown in Fig.7. The spectrum
for given T can be used for the analysis frequency range and dispersion spectrum of FE.

7. Results

The results of the problem defined in Sec. 2. and solved in the close form in Sec. 4. are presented
in this section. The amplitude of the loading force F (t) by Heaviside step function is denoted
F0, therefore the stress wave with the nominal axial stress σ0 = F0/A is generated and the
corresponding speed of movement of a particle has value v0 = σ/(ρc0). The nondimensional
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Figure 7: Amplitude density of rectangle pulse during time T .

axial stress σ/σ0 will be depicted along the bar as the function nondimensional axial coordinate
x/L. The response of the elastic bar for the different types of FE is presented for time t/t0 =
1/2, where t0 = L/c0 is the nondimensional time needed for the wave to pass through the bar.
This time is chosen to eliminate wave reflections at the end of the bar.

The analytical solution of this wave propagation problem by classical theory was introduced
in (Kolsky and Key, 1963). The analytical solution will be used for assesing of the influence of
the FE type and spectral order on the stress state. In the following text, the bar of length L is
discretizated by fifty classical and spectral finite elements, NELEM = 50 .

7.1. Classical FE
The response of the bar discretizated by classical linear finite elements, where consistent and
diagonal mass matrices are assummed, is shown in Fig. 8. For the consistent mass matrix, the
stress distribution oscillates especially in front of the theoretical wavefront. This is outcome
of the dispersion analysis, where wave speed for linear element with consistent mass matrix is
greater than the ’exact’ wave speed value. On the other side, the stress distribution for the diag-
onal mass matrix oscillates in front of the theoretical wave front. It follows from the dispersion
analysis, where wave speed is smaller than the ’exact’ wave speed value. This is a generally
known fact (Belytschko and Mullen, 1978).

The response for quadratic (p = 2) FE is shown in Fig. 9. The oscillations for quadratic
FE have lower intensity than these for linear elements. The stress jump is well approximated
and the wave speed effects for consistent and diagonal mass matrix are the same as those for
linear elements. For the diagonal mass matrix, the spurious oscillations is not obvious in front
of the wavefront, but they are not negligible in front of the wavefront. The diagonal mass matrix
by row-sum method and by HRZ algorithms is the same.

For the higher order FE (p = 3 and p = 5), the intensity of the spurious oscillations is
decreasing, see Fig. 10 and Fig.11. The diagonal mass matrix by row-sum method proves
higher accuracy than the diagonal mass matrux given by HRZ algorithms.
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Figure 8: Stress distribution in a elastic bar for linear (p = 1) classical FE with consistent mass
matrix (on the left) and with diagonal mass matrix (on the right) for time t/t0 = 1/2.

0 0.2 0.4 0.6 0.8 10.5
−1.5

−1

−0.5

0

0.5

x / L

σ / σ
0

Classical FE, p = 2, consistent mass, NELEM = 50

0 0.2 0.4 0.6 0.8 10.5
−1.5

−1

−0.5

0

0.5

x / L

σ / σ
0

Classical FE, p = 2, diagonal mass, NELEM = 50

Figure 9: Stress distribution in a elastic bar for quadratic (p = 2) classical FE with consistent
mass matrix (on the left) and with diagonal mass matrix (on the right) for time t/t0 = 1/2.

7.2. Chebyshev spectral FE

The stress distribution for the quadratic spectral Chebyshev FE has the behaviour similar to
the linear classical FE with diagonal mass matrix. On the other side, the higher spectral Cheby-
shev finite elements are not suitable for the numerical solution of wave propagation problems,
see Fig. 12. This fact can be explained by unfavourable dispersion properties, see Fig. 6.

7.3. Legendre spectral FE

The higher order (p = 3, 5) Legendre spectral finite elements, where mass matrix is naturally
diagonal, offer a very good choice for the numerical solution of the elastic wave propagation
problems. The response of the bar for the cubic and quintic Legendre spectral FE is presented
in Fig. 13, where spurious oscillations are smaller than those of the classical FE with diago-
nal mass matrix. The Legendre spectral FE have a potential for being employed in explicit
elastodynamics, where the lumped mass matrix is required.
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Figure 10: Stress distribution in a elastic bar for cubic (p = 3) classical FE with consistent mass
matrix (on the left), with diagonal mass matrix by row-sum method (on the right) and with di-
agonal mass matrix by HRZ algorithms (on the bottom) for time t/t0 = 1/2.

8. Conclusions

In this paper, the dispersion properties of different types of one-dimensional finite elements
were studied. The attention has been paid to the classical finite elements and Legendre and
Chebyshev spectral finite elements. Dispersion relations for different orders of approximation
polynomials are presented. The spatial discretization by finite element method was studied in
the one-dimensional wave propagation in the elastic ’thin’ bar, where the loading was taken
in the form of the Heaviside step function. The numerical solution by higher order classical
and spectral finite elements were tested and compared with the solution by classical theory of
elastic stress propagation. For the FE spatial discretization, the close form of analytical solution
in the series form was found, where all eigenfrequencies are necessary to compute. Classical
finite elements with consistent and diagonal mass matrix by row-sum method and HRZ algo-
rithms was considered and also Legendre and Chebyshev spectral finite element were used. The
Legendre spectral finite element method makes advantageous use of diagonal mass matrix with
the preservation of the qood dispersion properties against classical finite element with lumped
(diagonal) mass matrix. It was recommend to choose the odd spectral order (p = 3, 5) due to
minimal stopping band range for the lower dispersion branches. The Legendre spectral element
has a potential to the appropriate numerical solution of a elastic wave propagation problem with
fractional encroachment to the standard finite element codes, where the nodal positions and the
quadrature technique is changed. The spectral Legendre FEM produces diagonal mass matrix
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Figure 11: Stress distribution in a elastic bar for quintic (p = 5) classical FE with consistent
mass matrix (on the left), with diagonal mass matrix by row-sum method(on the right) and with
diagonal mass matrix by HRZ algorithms (on the bottom) for time t/t0 = 1/2.
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Figure 12: Stress distribution in a elastic bar for quadratic (p = 2) (on the left) and for cubic
(p = 3) (on the right) spectral Chebyshev FE for time t/t0 = 1/2.

needed to the explicit direct time integration. The Chebyshev spectral finite elements are not
recommended for the computational elastic wave propagation due to their unsuible dispersion
spectrum.
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Figure 13: Stress distribution in a elastic bar for quadratic (p = 2) (on the left), for cubic (p = 3)
(on the right) and for quintic (p = 5) (on the bottom) spectral Legendre FE for time t/t0 = 1/2.
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