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Summary: Descaling of hot rolled plates is typical application for high pressure 
flat jet nozzles. Row of nozzles with overlapping area at direction of moving hot 
plate is usually used. Homogeneity of descaling is very important parameter for 
final quality of the rolled plate. Paper discusses about measurements of impact 
footprint for single nozzle as well as for two overlapping nozzles. Two different 
methods were used in measurements. The first method measures impact forces in 
the free stream. The second method measures impact forces of water stream 
penetrating through the forming water layer on a test plate. Size of pressure 
sensor also influences the measurement data. Different dimensions of sensors 
were used. Measurement data were recalculated by inverse task to so called zero 
size sensor. Raw measured data as well as sharpened data are presented. The 
overlapping area is also discussed in this paper. 

 

1. Introduction 
The steel hot rolling process is inseparably linked to the surface oxidation of rolled material at 
increased temperatures. Hydraulic descaling of a rolled material is a process of removing the 
oxide from the hot steel surface. Descaled surface quality is fundamental for the total surface 
quality of a roll product. More information about descaling is introduced in [1]. In Heat 
transfer and fluid flow laboratory (Brno UT) we are focused on descaling in relation to the 
heat transfer and quality of steel surface after descaling process. We can use three different 
types of measurements. The first one is concentrated on measuring of temperature drop when 
a product is passing under the nozzle. The second type of measurement consists of surface 
quality evaluation where a defined layer of oxides is sprayed out and its remaining thickness 
is analyzed. The third is water pressure distribution measurement which is our subject in this 
article. 
 
2. Measurement theory of pressure distribution 
As we mentioned, the hydraulic descaling is very important tool for removing the oxides from 
the surface of a plate. For this operation we use high pressure flat jet nozzles. By analyzing 
water impact we get important parameters such as footprint like pressure and shape. For 
measurement the pressure distribution a pressure sensor of a finite size is used (see Figure 1). 
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To compute a real pressure distribution an inverse algorithm have to be used. The size ratio of 
a nozzle spray spot and the sensor is responsible for the precision of measured data. As the 
ratio becomes smaller the precision of the measured data is getting worse because of 
averaging the impact forces.  
 

 
Figure 1  Pressure distribution measurement 

This method can creates an inverse pressure sensor after converting data to the frequency 
domain. We can also multiply the measured data with the inverse pressure sensor and 
converts the results back to the space domain. Although this method works well also with 
noisy data, a limit of this method exists. 
 
2.1 Usage of the Fourier transform 
For measured data evaluation the Fourier transform (FT) is used. FT is an operation that 
transforms one complex-valued function of a real variable to another. A physical process can 
be described either in the space domain, by the values of some quantity h as a function of 
space x, e.g., h(x), or else in the frequency domain [2], where the process is specified by 
giving its amplitude H as a function of inverse wavelenght f. We have two functions h(x) and 
H(f) as two different representations of the same function. One goes back and forth between 
these two representations by meaning of Fourier transform equations. 
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2.2 The Convolution Theorem 
The Fourier transform translates between convolution and multiplication of functions. If h(x) 
and g(x) are integrable functions with Fourier transforms H(f) and G(f), then the Fourier 
transform of the convolution is given by the product of the Fourier transforms H(f) and G(f).  
The convolution of the two functions, denoted  𝑔𝑔 ∙ ℎ , is defined by  
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where ∙ denotes convolution operation, then 𝑔𝑔 ∙  ℎ is a function in the time domain and that 
𝑔𝑔 ∙  ℎ =  ℎ ∙  𝑔𝑔. It turns out that the function 𝑔𝑔 ∙  ℎ is one member of a simple transform pair 
 𝑔𝑔 ∙ ℎ ⇔ 𝐺𝐺(𝑓𝑓) ∙ 𝐻𝐻(𝑓𝑓) (4)  

 
In other words, the Fourier transform of the convolution is just the product of the individual 
Fourier transforms [2]. 
 
2.3 The Discrete Fourier transform (DFT) 
 It transforms one function into another, which is called the frequency domain representation 
of the original function. But the DFT requires an input function that is discrete and whose 
non-zero values have a limited (finite) duration. Such inputs are often created by sampling a 
continuous function. In the most common situations, function h(x) is sampled (i.e., its value is 
recorded) at evenly spaced intervals in space. Let Δx denotes the space interval between 
consecutive samples so that the sequence of sampled values is 

ℎ𝑛𝑛 = ℎ(𝑛𝑛∆𝑥𝑥)  n= ..., -3, -2, -1, 0, 1, 2, 3, ... 
 

The reciprocal of the space interval Δx is called the sampling rate; if Δx is measured in 
meters, for example, then the sampling rate is the number of samples recorded per meter. 
 
2.4 The sampling theorem and aliasing 
Sampling is the process of converting a signal (for example, function of continuous space) 
into a numeric sequence (a function of discrete space). For any sampling interval Δx, there is 
also a special frequency fc, called the Nyquist critical frequency [2], given by 

𝑓𝑓𝑐𝑐 ≡
1

2∆𝑥𝑥
 

The Nyquist critical frequency is important for two distinct reasons. The first one is the 
remarkable fact known as the sampling theorem: If a continuous function h(x), sampled at 
an interval Δx, happens to be bandwidth limited to frequencies smaller in magnitude than fc, 
i.e., if H(f) = 0 for all |𝑓𝑓|  ≥  𝑓𝑓𝑐𝑐  , then the function h(x) is completely determined by its 
samples hn. 
This is a remarkable theorem for many reasons, among them that it shows that the 
„information content” of a bandwidth limited function is, in some sense, infinitely smaller 
than that of a general continuous function. The bad news concerns the effect of sampling a 
continuous function that is not bandwidth limited to less than the Nyquist critical frequency. 
In that case, it turns out that all of the power spectral density that lies outside of the frequency 
range −𝑓𝑓𝑐𝑐  <  𝑓𝑓 <  𝑓𝑓𝑐𝑐  is spuriously moved into that range. This phenomenon is called 



aliasing. Any frequency component outside of the frequency range (-fc; fc) is aliased (falsely 
translated) into that range by the very act of discrete sampling (see Figure 2). 

 
Figure 2  Sampled function translated by the Fourier transform is defined between plus and 
minus value of the Nyquist critical frequency. 

 
3. Correction of measured data 
In fact the measured distribution differs from the real one. Simulated real and measured 
distribution of pressure is shown in Figure 3. The measured peak is 77.8 MPa, but the real one 
is 100 MPa. The measured impact shape is wider than the real one. An impact was 20x80 mm 
and a sensor with circular active surface was assumed [3].  
 

 
Figure 3  (a) simulated real distribution, (b) simulated measured distribution using a circular 
sensor of 12 mm in diameter 

 
The diameter active surface was 12 mm. Such a large sensor averages values and one 
measured value is equal to 
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where A is the surface of the sensor. The whole measured distribution can be described using 
the following convolution equation 
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where h is a filter function. This filter function describes how the sensor averages real values. 
To obtain a real distribution from a measured one, a convolution equation can also be used. In 
this case, the filter function is an inverse function to the sensor filter function. The 
convolution, inverse function computation and noise reduction can be done more easily in the 
frequency domain than in the space domain. 
 
 
3.1 Conversion to the frequency domain 
The data measured using the circular sensor (Ø12 mm) is shown in Figure 3. Measured data 
and sensor filter function are transformed from the space domain into the frequency domain 
using FFT (Fast Fourier Transform). A FFT is an efficient algorithm to compute the discrete 
Fourier transform and its inverse. The transformed values are shown in Figure 4 where the 
amplitude axes use a logarithmic scale. 

 
Figure 4  (a) Data in frequency domain, (b) circular sensor in frequency domain.  

 
3.2 Function of Inverse Sensor and Data Sharpening 
When the data is transformed into the frequency domain we can compute the inverse sensor 
filter using 

 ℎ−1(𝑓𝑓𝑥𝑥 ,𝑓𝑓𝑦𝑦) =
1
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The inverse sensor filter in the frequency domain is shown in Figure 5a. Having the inverse 
filter we can do the convolution, eqn (4), in the frequency domain using this inverse filter and 
measured data to obtain a real pressure distribution (still in the frequency domain), see Figure 
5b. 
 
 
 In our case, the convolution is described by 
 

 𝑆𝑆�𝑓𝑓𝑥𝑥 ,𝑓𝑓𝑦𝑦� = 𝐺𝐺(𝑓𝑓𝑥𝑥 ,𝑓𝑓𝑦𝑦) ∙ 𝐻𝐻−1(𝑓𝑓𝑥𝑥 ,𝑓𝑓𝑦𝑦) (8)  
 



where G are measured data, 𝐻𝐻−1 is the inverse sensor function and S represents a sharpened 
data. Transforming sharpened data from the frequency domain into the space domain using 
inverse FFT we obtain a pressure distribution which should be very close to the real pressure 
distribution (see Figure 5c). As you can see, some noise is visible in the sharpened data (small 
waves). Noise can be partially suppressed as described in the following section. 
 
 
3.3 Noise reduction and aliasing phenomenon 
Noise is an unwanted perturbation to a wanted signal. In signal processing or computing it can 
be considered unwanted data without meaning. Data that is not being used to transmit a signal 
is simply produced as an unwanted by-product of other activities. In our case noise is the most 
significant at high frequencies and because we are working in the frequency domain, noise 
can be suppressed. As you can see in Figure 4b, the sensor function consists of the main 
frequency spectrum (the highest peak in the middle) and higher harmonic frequencies (the 
other waves). Cutting off the higher harmonic frequencies and making them equal to zero also 
in the inverse sensor filter, we get a cut inverse sensor filter. Using this filter for convolution 
(Eq. 8) instead of the inverse filter and transforming sharpened data using inverse FFT, we get 
sharpened measured data with suppressed noise. The computed maximum is not 100 MPa but 
only 96.3 MPa. This is due to the aliasing effect that is described in previous sections. The 
sampling continuous function that is not bandwidth limited to less than the Nyquist critical 
frequency results in an incorrect frequency spectrum.    

 
Figure 5  (a) Inverse sensor function in frequency domain; (b) convolution of measured data 
and inverse sensor function in frequency domain; (c) sharpened measured data – convolution 
of measured data and inverse sensor function in frequency domain; (d) real pressure 
distribution in frequency domain. 



 
Figure 6 (a) Circular sensor function in space domain filtered using low-pass filter; (b) 
circular sensor function in frequency domain with removed high frequency; (c) cut inverse 
sensor function in frequency domain; (d) sharpened measured data. 

Any frequency component that lies outside of the range -fc < f < fc is spuriously moved into 
that range (this phenomenon is called aliasing). This effect is more significant for the sensor 
function because of sharp edges of the sensor. All we can do to avoid aliasing is to use a low-
pass filter. The sensor function passes through the Gaussian low-pass filter in the space 
domain. A smoothed sensor function is shown in Figure 6a. Transforming this function into 
the frequency domain (see Figure 6b), we get high frequencies equal to zero. This means there 
is no aliasing effect. Using the cut smooth inverse sensor filter for convolution (see Figure 6c) 
and transforming sharpened data using inverse FFT, we get sharpened measured data (see 
Figure 6d) with a maximum of 98.9 MPa which is very close to the real maximum 100 MPa. 
You can also notice that the noise is well suppressed compared with the computed result 
shown in Figure 5c. 
 
 
4. Methods of measurement 
The measurement was made for high-pressure flat jet nozzle where the distance from the 
surface was 150 mm and water pressure was 25 MPa. Two different types of measurements 
are used. The first type measures impact forces in the free stream and the second type 
measures impact forces under the forming water layer on the sprayed plate. 
 
4.1 Measurement in the free stream 
The first type of measurement is based on the pressure sensor that is above the surrounding 
surface. No water layer is forming during this measurement on the pressure sensor. The main 



body that holds the pressure sensor has V-shape that allows measurement of flow in the free 
stream (Figure 7). The sensor has circular shape and 2 mm in diameter. Device contains the 
dynamometer with max load 5N that measures forces of impinging water from flat jet nozzle. 
This force is recalculated to impact pressure knowing the dimension of active area of the 
pressure sensor. Data from the measurement are displayed as 3D chart (See Figure 8). From 
this chart we can see the specification of the nozzle as footprint, max pressure and detect 
deficiencies of the nozzle.             
 

 
 

Figure 7  Measuring of water impact in the free stream 

 

pressure sensor 
 

 



 

 
Figure 8  Raw data from measurement in the free stream 

 
 
4.1.1 Two overlapping nozzles in the free stream 
The nozzle in the right position in Figure 9, the fine “teeth” on the record is caused by the 
scanning step. Scanning step could be reduced but one measurement last over two hours even 
with this scanning step. Also we can see that the footprint of nozzle in right position is the 
same as footprint of nozzle in Figure 8. No interactions observed between two overlapping 
nozzles in the measurement.     
 



 
Figure 9  Raw data from measurement of the overlapping nozzles in the free stream 

 

 
Figure 10  Measurement by the pressure sensor embedded to the test plate 



4.2 Measuring with the pressure sensor embedded to the test plate 
The second method measures impact forces of water stream penetrating through the forming 
water layer on the test plate (Figure 10). The pressure sensor is leveled with the plate surface 
and has 1.5 mm in a diameter. During this measurement the water layer is formed and the 
pressure sensor in this case measures impact pressure under this water layer. Raw measured 
data is presented in Figure 11.  
 
 
 
 

 
Figure 11  Raw data from measurement by the test plate   

 
 



4.2.1 Two overlapping nozzles and their interactions under the forming water layer 
We concentrate on the two overlapping nozzles. One nozzle does not influence the second 
nozzle. This is obvious from comparison of measurements shown on Figure 11 and 12. 
Footprint of the single nozzle in Figure 11 is the same as footprint right nozzle in Figure 12. 
From this behavior we deduce that the second nozzle does not influence the first nozzle.   
 

 
Figure 12  Raw data of two overlapping nozzles from the test plate measurement 

 
 
 
 
 



5. Filtering and sharpening of the real measured data 
Real data from the measurement in the free stream are shown in Figure 8 and from the 
measurement from the test plate in Figure 11. Some noise in measured data is obvious. Our 
sharpening algorithm also includes shifting of the pressure distribution to the line that is 
collinear with axis Y as we look at Figure 13. If we compare Figure 8 and 13 we can see that 
the pressure maximum is higher in Figure 13. For comparison we attach sharpened data from 
the measurement on the test plate (Figure 14). 
    

 
Figure 13  Sharpened data from measurement in the free stream 



 

 
Figure 14: Sharpened data from measurement on the test plate 

 
6. Conclusion 
It was shown that any measured data are biased due to the finite size of the measuring sensor. 
The distortion becomes higher as the size ratio of a nozzle spray spot and the sensor 
decreases. An inverse method that computes real pressure distribution from measured data has 
been presented. The presented method works well with any shape of the measuring sensor. 
During the measurements with sensor embedded in the plate no influence of impact pressure 
was observed in the overlapping area. Measurements in the free stream and on the test plate 
were recomputed from sensor size 2.0 mm and 1.5 mm, respectively, to "zero size sensor". 
The computed maximum values are similar (see Figure 13 and Figure 14). Visual observation 
of impact on flat surface shows some influence in the overlapping area (see Figure 10) but the 



measurements did not prove significant effect on the impact water pressure in the interference 
area.    
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