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Summary: The paper presents an analysis of vibration of electromechanics sys-
tem consisting of a 1DOF vibrating mechanical subsystem connected by means of 
spring and crank mechanisms with an electric driving motor with limited power 
and inertia. After transformation of motion equations and using averaging 
method, the approximate expressions for stationary and transient vibrations are 
derived. Owing to the non-ideal excitation, the unstable section of stationary re-
sponse curve originates and causes jumps at transient processes. Influence of 
slope of moment characteristics and driving motor inertia on the range and level 
of instability domain is shown and discussed as well. 
 

1. Introduction 
The influence of nonlinear spring and/or dashpot characteristics on the dynamic properties of 
mechanical system has been investigated in the literature during the last century usually at the 
assumption of so called hard (ideal) strictly prescribed function of exciting force or exciting 
motion. Because actually the power of the real exciting energy source has always limited ca-
pacity, this idealization is in many cases not acceptable. The non-ideal properties (limited 
power, limited inertia) of source of exciting force introduce new nonlinear phenomena into 
dynamic behavior of the whole investigated system. 

These properties are studied on a one DOF nonlinear system excited by mechanical cam or 
crank mechanisms connected by a spring. Mechanical system can contain also a nonlinear 
element with a characteristic described by function ),( yyfε . The other nonlinearity is given 
by the motor characteristic ),( αϕM  and by excitation mechanisms. 

The first kind of non-ideal properties of energy source was mentioned with the connection 
of the so called Sommerfeld’s effect [1] in 1902, but the detailed analysis was given latter by 
V. O. Kononěnko [2,3] with the main orientation to the centrifugal exciter. The overview of 
the various systems behavior and selection of main publications on vibrating systems with 
weak excitation is given in [4 - 9]. In these publications was the main attention oriented to 
problems of response curve, change of eigen- or resonance-frequencies, variations of forms, 
arising of new harmonic components, etc. 

Theoretical analysis of mentioned nonlinear system in this paper is focused on the investi-
gation of influence of non-ideal energy source on the form of response curve and stability of 
weakly excited mechanical system.  
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For comparison and verification of results gained by analytic-numerical methods with 
properties of real structures, the laboratory stand of vibrating system excited by electric motor 
with limited power is described. 

 

2. Equations of motion  
The combination of both nonlinearities i.e. nonlinear internal element together with the nonli-
near characteristic of the source of exciting forces can give rise to some new properties and 
changes in the motion of such systems. 

Let us show these properties on the system with one degree of freedom excited by the me-
chanical exciter, the main part of which is the motor with the moment characteristic ),( αϕM  
(or power characteristic ),( αϕP  = ),( αϕϕ M ), where α  is the parameter ascertaining the 
input of constant energy flow into the motor, ϕ  is the angular velocity. The shaft of the motor 
is provided by a crank or cam mechanism connected by spring (stiffness k ) with the vibrating 
system (Fig. 1). 

 

 
Fig. 1 

 
The motion of this system is described by the differential equations  
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The characteristic of the mechanical nonlinearity is described by the function ),( yyfε , 

where ε  is a small parameter. Second nonlinearity is caused by the conversion of the rotation 
)(tϕ  into the translation , and is described by the last equation (l). y
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where kkk +=1 . 

The motor characteristic we shall suppose in the simple form 
),(),( 0 ϕααϕ −= MM      (4) 

where M0 is the declination of motor moment characteristic and parameter α  corresponds to 
the revolution of the idle run of the motor (Fig. 2). 

 
Fig. 2 

 
During study of the forced oscillation of this system, we can apply the direct numerical 

simulation or use some of the first approximation methods. The direct numerical simulation 
gives a more exact solution and for given case it expresses the real motion of the nonlinear 
system, but the first approximation methods give more general results and enable an analyti-
cal description of both response curves and domains of instability, even for the wide set of 
equations (1). 

In this paper we shall deal with the solution in the first approximation and we use the aver-
aging method combined with the equivalent linearization method [11, 12]. 

These methods are based on the application of the transformation of variables , into : y SC,
         ϕϕ sincos SCy += ,     (5) 

where  are slowly varying variables. SC,
Introducing the auxiliary conditions 

        0sincos =′+′ ϕϕ SC      (5a) 
we get 

      ϕϕ cossin SCy +−=′      (5b) 
)sincos()cossin( ϕϕϕϕ SCSCy +−′+′−=′′ . 

After substituting (5b) into (3) with the consideration of (5a) we get the set of three differen-
tial equations of first order in ϑ′′′ ,, SC  
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Let us investigate motion near to the stationary state. Then the right sides and also A, B are 
small of magnitude ε. 

The equations (6) exactly describe the behaviour of the system from Fig. 1 and are fully 
identical with equations (1). Because an analytical solution is practically impossible, it is ad-
vantageous in this case to split the right-hand expressions into the parts containing only mem-
bers explicitly independent on the angle ϕ  and into the parts periodic in ϕ . 

During this treatment the equivalent linear stiffness  and damping b  were in-
troduced instead of the nonlinear function 
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The amplitude α of the relative motion y is given by 
22 SCa += .     (8a) 

The nonlinear function ))(),(( ϕϑϕε yyf ′ of the periodic variables  was also divided 
into the part of the first harmonic components and the rest O containing the other harmonics 

yy ′,
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For the solution of the equations (6) we shall use the averaging method, based on the as-

sumption that the right-hand terms are proportional to the small parameter ε . Therefore  the 
derivatives ϑ′′′ ,, SC  are also small and we can suppose that components  of the oscilla-
tions change slowly. Then their values during the one period 

SC,
ωπ /2=T  can be considered as 

constant, as well as expressions , which are also roughly constant during one period BA, T . 
By applying the averaging procedure on the eqs. (6), we reduce these equations to a system 

of three differential equations of the first order in the form 
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The other terms are rapidly varying terms with the zero average values e.g. 
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and in the first approximation they can be neglected. The equations (10) describe both the 
stationary (response curves) and the non-stationary vibrations and can be used also for stabil-
ity study. 
 
 

3. Stationary forced vibration 
The response curves are given by the setting of 0=′=′=′ ϑSC , and ωϑ = . For simplicity, 
we suppose linear system ke = 0, be = 0. 

By means of known procedure we get algebraic equations ,0,0 == BA  which can be 
written in matrix form 
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The stationary revolution ω  at a given parameter α and 0=′ϑ  can be ascertained from the 
last equation (10): 
         02/)(0 =−− rSkM ϑα .     (12) 

The example of the amplitude response curve a(ω) for linear (ke = 0, be = 0) 1DOF system, 
where SCa +=  is in Fig. 3. By dashed lines are there drawn also responses of 
components S(ω) and C(ω). 

 
Fig. 3 

 
3. Stability 
The stationary states of the periodic forced vibrations given by the response curve ω,a  are at 
non-ideal excitation not stable in all points. The study of stability is based on the perturbation 
theory. To the equilibrium state at the fixed frequency ω  and constant values  fulfilling 
the equations (11) and (12) we add the small perturbations 

SC,

1,, ωsc  and obtain the perturbed 
motions: 
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After substituting (13) into equations (10), developing it in the series of powers of small 
quantities 1,, ωsc  and neglecting the powers higher than one, we obtain the linear differential 
equations in 1,, ωsc  
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where the square matrix L is of order 3 and contains both the parameters of the system 
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These equations based on the simplificated averaging method where the periodically 
variable terms are neglected are not quite exact and feasible for all quantitative stability 
analysis, but are useful for qualitative analysis. 

The second and higher approximation must be applied for ascertaining the more exact 
behaviour in instability domain, but the gained expressions are very complicated and 
laborious.  

 
Fig. 4 

Another approximate method of determination of stability regions caused by weak excita-
tion is derived from the simple equivalence of input and output moment (or power) of elec-
tromechanical exciter described by third equation (10) after substituting values of stationary 
harmonic oscillations. Graphical representation is in Fig. 4, where the motor moment charac-
teristics )(0 ωα −= MM  are depicted by oblique lines for different α and loading moment 
from vibration system 

222

2

)(2
)(

2 ωω

ω

bmk

brkSrkM
+−

==     (15) 

is expressed by response curves S(ω). Stability boundaries are given by points of common 
tangents. At slowly increasing energy input – increasing frequency ω - with the slope of 
motor characteristic M0 = 0.4, the jump a→b occur. When the energy input decreases, the 



back jump occur between points e→f. Section a-e is unstable. Similar, but greater jumps 
happen at weaker motor M0 = 0.2 between points c→d and back g→h. 

This graphical representation of jumps over instability domains does not give any 
information about the properties of unstable branches (e.g. a¯e, c¯g) of response curve. 
Character of instability can be ascertained by using equations derived after introducing small 
perturbations (13). 

As examples of application mentioned analysis, the influence of inclination M0 of moment 
characteristic of driving motor on the exponent λ is shown in Fig. 5 for values 
M0 = 0.5; 1; 2 and I = 1. 

,...)( 0
tecc λ=

Increasing slope M0 decreases both the unstable range of frequency ω and the level of in-
stability given by the positive value of characteristic exponent λ. 

 

 
Fig. 5 

 

 
Fig. 6 

Influence of moment of inertia I of driving motor is shown in Fig. 6, where at constant 
value M0 = 0.5 there are plotted characteristic exponents λ for four moments of inertia I = 1, 



5, 10, 30. Magnitude of inertia does not influence the instability range, but has great decreas-
ing effect on the level of instability given by roots λ.  

 However these both approximate methods do not enable to find the exact types of unstable 
motions and of transient processes.  Therefore and also for verification of various approxi-
mate methods of solution, the experimental research of vibrating system is now prepared in IT 
ASCR. 

 
4. Experimental investigation of interaction of energy source with vibrating system 
For completation, verification and improvement of analytical studies of non-ideal excitation, a 
simple experimental equipment was designed, produced and put into preliminary service in 
laboratory of IT-ASCR [13]. 

This experimental set consists in its basic form of one-DOF mechanical subsystem (mass 
1,2 kg supported by two steel leaf springs, eigenfrequency 18,4 Hz) connected by a crank 
mechanism with DC electric motor. Moment characteristic of this motor, fed by a prescribed 
voltage function, can be set up as weak or hard excitation source in some range. 

Driving motor with the crank mechanisms and thin leaf spring for excitation of mechanical 
vibrating subsystem is shown in Fig. 7. 

 

 
Fig. 7 

 
Examples of selected types of moment characteristics of two electric motors, measured in 

VUT Brno, will be also mentioned at presentation. 
 

 
5. Conclusion 

The object of analytical investigations presented in the paper is a mechanical vibrating 
system excited through a crank mechanism by an electric motor with limited inertia and 
limited source of energy.  

After transformation independent variables in equations of motion, the expressions for 
stationary and nonstationary motions were derived. 

Unstable sections of response curve were ascertained by means of equivalence of averaged 
input and output moments of exciter and forced system.  



It is shown that the two main parameters of limited source of driving energy, i.e. 
declination of moment characteristic M0 and moment of inertia I have great effect on the 
range and level of instability in the unstable section of response curve. 

For verification of mentioned approximate methods of solution, the experimental equip-
ment is prepared in laboratory of IT ASCR.  
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