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Summary: The paper deals with the perfusion in hierarchically arranged double
porous media constituted by transversely periodic layers. In each layer the ref-
erence periodic cell is composed of several compartments comprising the matrix,
featured by permeability decreasing with the scale parameter, and several discon-
nected channels where the permeability is scale independent. Homogenization of
the steady Darcy flow in such medium is performed by the method of periodic un-
folding. The limit model involves the homogenized permeabilities associated with
the channels and the transmission and drainage coefficients associated with the
mass redistribution between the microstructural compartments. Due to the layered
organization of the medium, the diffusion problem in 3D heterogeneous body can
be replaced by a finite number of 2D problems describing the homogenized fluid
redistribution in each homogenized layer. For such decomposition, coupling condi-
tions governing the fluid exchange between the layers can be derived. This model is
intended for simulations of the blood perfusion in the brain tissue.

1. Introduction

In this paper we report results on the upscaling Darcy flow in the strongly heterogeneous porous
material composed of two highly permeable disconnected compartments – the channels, sep-
arated by the matrix, where in the latter one the permeability coefficients are proportional to
the square of the heterogeneity scale; this is the usual ansatz of treatment the double porosity
media, see (5; 1; 2; 4; 10). The model is being developed for its application in biomechanics
of of the “hierarchical perfusion” in the brain tissue. We assume that the structure is formed
by layers and is transversely periodic in each layer. Here we treat only the homogenization of
the perfusion problem imposed in one layer. Such a homogenized model of the perfused single
layer can be adapted to describe perfusion in the double porosity media consisting of several
layers.
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e-mail rohan@kme.zcu.cz

 

International Conference  
ENGINEERING MECHANICS 2010 
Svratka, Czech Republic, May 10 – 13, 2010 



YB

YA

YM

Γ+δ

Γ−δ

Γ    δ

Ωεδ
A

Ωεδ
M

Ωεδ
B

+YB+YA

−Y

Y

M AY

M AY

ε

δ

Figure 1: The layer of the three compartment heterogeneous structure and the domain and
boundary decomposition of the reference periodic cell Y .

2. Problem description

We consider diffusion problem in layer Ωδ ⊂ R3 with small thickness δ → 0. Let Γ0 ⊂ R2 be
the mid-surface of Ωδ spanned by coordinates x′ = (xα), α = 1, 2, so that

Ωδ = Γ0×]− δ/2, +δ/2[ .

The perfusion in the single layer is defined by solutions of the following b.v. problem:

∇ ·
(
κεδ · ∇pεδ

)
= 0 in Ωδ ,

n · κεδ · ∇pεδ = 0 on Γ∞δ , n · κεδ · ∇pεδ = gεδ± on Γδ+ ∪ Γδ− ,
(1)

where gε± is the perfusion flux and n is the normal vector. The permeability κεδ is defined
piecewise w.r.t. the decomposition of Ωδ into three disjoint parts – two “channels” Ωεδ

A ,Ω
εδ
B and

the “matrix” Ωεδ
M which separate them, Ωδ = interiorΩεδ

M ∪ Ωεδ
A ∪ Ωεδ

B , as illustrated in Fig. 1;
we consider the following double porosity ansatz, cf. (5; 4; 10),

κεδ(x) =

{
Kεδ(x) x ∈ Ωεδ

D , D = A,B ,
ε2κ̄εδ(x) x ∈ Ωεδ

M .
(2)

2.1. Dilated weak formulation

The weak formulation of (1) is introduced by the following identity: given gεδ± ∈ L2(Γ±δ),
find pεδ ∈ H1(Ωδ)/R such that∑
D=A,B

∫
ΩεδD

∇q · Kεδ · ∇pεδ +

∫
ΩεδM

∇q · ε2κ̄εδ · ∇pεδ =

∫
Γ+δ∪Γ−δ

g±εδq dSx ∀q ∈ H1(Ωδ) .

(3)

Since (1) is the Neumann type problem, its solution exists provided the boundary fluxes are
equilibrated: ∫

Γ±εδ
gεδ± dSx = 0 . (4)



If this solvability condition is satisfied, due to (2), for ε > 0 the existence of solutions re-
sults from the Lax–Milgram theorem. Since pεδ is defined up to a constant, to obtain a unique
solution, we may impose the following condition,∫

ΩεδA

pεδ = 0 , (5)

which will also be used to obtain a priori estimates of the solution. Obviously, in the above
condition we could replace A by B.

Dilated formulation Variational equality (3) can be written equivalently in the dilated config-
uration where instead of Ωδ the layer is represented by domain Ω = Γ0×]− 1/2, +1/2[ having
unit thickness. For given gε± ∈ L2(Γ±), find pε ∈ H1(Ω)/R such that∑

D=A,B

∫
ΩεD

∇q · Kε · ∇pε +

∫
ΩεM

∇q · ε2κ̄ε · ∇pε =
1

δ

∫
Γ+∪Γ−

g±εq dSx ∀q ∈ H1(Ω) . (6)

2.2. Periodic microstructure — representative cell

We set Ξ =]0, 1[2, Iz =] − 1/2, 1/2[ and introduce the reference periodic cell, Y = Ξ × Iz.
The periodic dilated structure of layer Ω is generated by cells Y ε = εΞ × Iz = {(εy′, z) ∈
R2 × R, (y′, z) ∈ Y }. The periodic structure decomposing Ω is generated by the following
decomposed structure of Y : let YA, YB, YM ⊂ Y be mutually disjoint open bounded such that

Y = YM ∪

( ∑
D=A,B

YD

)
∪

( ∑
D=A,B

∂MYD

)
, ∂MYD = ∂DYM = YD∩YM , D = A,B . (7)

Any of the (dilated) subdomains Ωε
D, D = A,B,M is generated as the lattice:

Ωε
D =

⋃
k∈Kε

(
Y ε
D + ε

∑
α=1,2

kα~eα

)
, Y ε

D = {(εy′, z) ∈ Y ε, (y′, z) ∈ YD} , (8)

where ~eα = (δα1, δα2, 0) and Kε = {(kα), α = 1, 2 , kα ∈ Z :
(
Y ε +

∑
α=1,2 kα~eα

)
⊂ Ω},

where δαβ is the Kronecker symbol.
The upper and lower boundaries of Y are denoted by ∂Y ± = Ξ × z± where z± = ±1/2.

Further, we introduce the boundary segments ∂±Y = Ξ× z± and define

∂±YD = ∂±Y ∩ ∂YD , D = A,B,M . (9)

Channels represented by YD, D = A,B have branches intersecting ∂±Y at surfaces AkD
(channel inlets, outlets), k ∈ JD, where JD is the index set, so that

∂±YD =
⋃
k∈JD

AkD . (10)



3. Homogenization result

The homogenized layer is described by macroscopic model involving homogenized coefficients
which characterize permeability of the layer and fluid redistribution between different compart-
ments. The homogenized coefficients are determined by the microstructure of the layer and by
solutions of the microscopic problems.

3.1. Microscopic problems – corrector basis functions

In this section we introduce the so-called corrector basis functions as the solutions of a local
microscopic problems which are imposed in channels YD,D = A,B, and in the matrix YM . Be-
low we use these functions to define the homogenized coefficients involved in the homogenized
macroscopic problem.

Microscopic problem in YD. For corrector functions associated with the channel inlet, outlet
surfaces AkD, k ∈ JD, we need the following space decomposition employed below in (13).
Any q ∈ H1(Y) ∩H1(YD) can be written as

q =
∑
k∈JD

qk where qk ∈ Vk ≡ {ψ ∈ H1(Y) ∩H1(YD) | ψ = 0 on ∂Y \ Ak} . (11)

Note that
⋃
i∈JD V

i = H1(Y) ∩H1(YD).

1. Find πβD ∈ H1(Y)/R for β = 1, 2 such that∫
YD

(
K · ∇h

yπ
β
D

)
· ∇h

yφ = −
∫
YD

(
K · ∇h

yφ
)
β
∀φ ∈ H1(Y), (12)

2. We define function γkD ∈ H1(Y) ∩H1(YD) using the split

γkD = γ̂kD + γ̃kD , γ̂kD ∈ Vk , (13)

where for any k ∈ JD functions γ̂kD, γ̃kD are solutions of the following problems:

(a) Find γ̂kD such that∫
YD

(
K · ∇h

y γ̂
k
D

)
· ∇h

yq =
1

h

∫
Ak
χ̃kDq dSy ∀q ∈ Vk , (14)

(b) Find γ̃kD =
∑

j∈JD γ̃
kj
D , where γ̃kjD ∈ Vj , such that {γkjD }j , j ∈ JD solves

∑
j∈JD

∫
YD

(
K · ∇h

y γ̃
kj
D

)
· ∇h

yq
i = (δki − 1)

∫
YD

(
K · ∇h

y γ̂
k
D

)
· ∇h

yq
i ∀qi ∈ V i ,∀i ∈ JD.

(15)



Microscopic problem in YM . We introduce corrector basis functions ηA, ηB ∈ H1(Y) ∩
H1(YM) and γ+/− ∈ H1

#0(Y , YM) which satisfy the following Dirichlet conditions:

for D = A,B , ηD = δDR on ∂MYR , R = A,B ,

γ+/− = 0 on ∂MYA ∪ ∂MYB .
(16)

The following two subproblems are verified by γ+/− and ηD:

1. Find ηD ∈ H1(Y) ∩H1(YM), D = A,B with condition (16)1 satisfied, such that∫
YM

(
κ̄ · ∇h

yηD
)
· ∇h

yφ = 0 ∀φ ∈ H1
#0(Y , YM) (17)

Due to conditions (16)1,

ηB = 1− ηA , (18)

so that ηB can be obtained easily once ηA is resolved, thus, only one problem (17) needs
to be solved for either D = A, or D = B. On integrating by parts in (17), assuming
enough regularity, the following boundary conditions hold for ηD, D = A,B:

n · κ̄ · ∇h
yηD = 0 on ∂±YM . (19)

On ∂DYM the Dirichlet conditions are given by (16)1.

2. Find γ+ ∈ H1
#0(Y , YM) such that∫
YM

(
κ̄ · ∇h

yγ
+
)
· ∇h

yφ =
1

h

∫
∂+YM

φdSy ∀φ ∈ H1
#0(Y , YM). (20)

Analogous problem can be defined to compute γ−; for this the r.h.s. integral is evaluated
over ∂Y −M . Let us summarize that problem (20) is featured by the following boundary
conditions:

γ+ = γ− = 0 on ∂AYM ∪ ∂BYM ,
n+/− · κ̄ · ∇h

yγ
+/− = 1 on ∂+/−YM ,

n−/+ · κ̄ · ∇h
yγ

+/− = 0 on ∂−/+YM ,

(21)

where n± is the unit normal vector on ∂±Y outward to YM and notation +/−, or −/+
means the respective alternatives.

3.2. Homogenized coefficients

Using the corrector basis functions the following homogenized coefficients are introduced which
describe permeability properties of the layer (for detailed derivation see (7)).

• The in-plane permeability of channel D = A,B:

KDαβ =

∫
YD

(
K · ∇h

y(π
α
D + yα)

)
· ∇h

y(π
β
D + yβ) , α, β = 1, 2 , (22)

where the symmetric form follows from (12) on substituting there φ = πβD.



• The Barenblatt transmission coefficient:

G := GA =

∫
∂AYM

n[M ] · κ̄ · ∇h
yηA dSy = −

∫
∂AYM

n[M ] · κ̄ · ∇h
yηB dSy = −GAB . (23)

Moreover, it holds that GA = GB = G, thereby also GAB = GBA = −G; this result is a
simple consequence of ηB = 1− ηA.

• The Matrix drainage coefficient (FB+/− defined in analogy):

FA+/− =

∫
∂AYM

n[M ] · κ̄ · ∇h
yγ

+/− dSy (24)

• The Branch saturation coefficient (SB,kα defined in analogy for k ∈ JB):

SA,kα =

∫
YA

(K · ∇h
yγ

k
A)α =

∫
YA

(K · ∇h
yγ

k
A) · ∇h

yyα , k ∈ JA . (25)

It is worth noting that GD,FD+/− vanish, when n[M ] · κ̄(y)→ 0 for y ∈ ∂DYM . In such a case
channel YD has impermeable boundary ∂MYD, so that neither drainage through ∂±YM , nor via
the other channel is possible.

3.3. Macroscopic problem on layer Γ0

The macroscopic problem describes in terms of the channel pressures p0,A and p0,B the fluid
redistribution in the homogenized layer represented by the midsurface Γ0. The data of the
problem are the fluid fluxes prescribed on the “upper” and “lower” boundaries of the layer; in the
limit model these fluxes are represented by the channel branch fluxes gkD ∈ L2(Γ0) for k ∈ Jk,
D = A,B describing fluxes through surfaces AkD, and by the matrix fluxes g+, g− ∈ L2(Γ0)
which describe the fluid exchange through ∂±YM , i.e. the dual porosity and the exterior.

The limit equations involve fluxes g̃kD which are introduced using gkD ∈ L2(Γ0) (defined
independently each of the others) as follows

ḡD =

∑
k∈JD g

k
D|Ak|∑

l∈JD |A
l|

, g̃kD = gkD − ḡD , (26)

a.e. on Γ0.
The limit problem involving the homogenized coefficients (22)-(25) is described by two

equations describing the in-plane redistribution in channels A and B (the Einstein summation
convention is applied for repeated indices α, β = 1, 2). Given fluxes ḡD and g̃kD, k ∈ Jk,
D = A,B and g+, g−, compute p0,A, p0,B ∈ H1(Γ0) such that∫

Γ0

KAαβ∂xαp0,A∂xβq +

∫
Γ0

GA
(
p0,A − p0,B

)
q

=
1

h

∫
Γ0

q ḠA −
∑
k∈JA

∫
Γ0

SA,kα g̃kA∂
x
αq −

∫
Γ0

(
FA+g+ + FA−g−

)
q ∀q ∈ H1(Γ0)

∫
Γ0

KBαβ∂xαp0,B∂xβq +

∫
Γ0

GB
(
p0,B − p0,A

)
q

=
1

h

∫
Γ0

q ḠB −
∑
k∈JB

∫
Γ0

SB,kα g̃kB∂
x
αq −

∫
Γ0

(
FB+g+ + FB−g−

)
q ∀q ∈ H1(Γ0) .

(27)



In-plane permeability KA =

[
4.115 0.0
0.0 4.250

]
× 10−3

KB =

[
4.382 0.0
0.0 5.699

]
× 10−3

Barenblatt transmission G = 4.144
Matrix drainage FA =

[
−0.199 −0.317

]
FB =

[
−0.368 −0.265

]
Branch saturation SA,1 =

[
0.090 −1.469

]
× 10−3

SB,1 =
[
0.026 2.581

]
× 10−3

SA,2 =
[
0.043 −1.709

]
× 10−3

SB,2 =
[
0.008 0.682

]
× 10−3

SA,3 =
[
0.0217 3.829

]
× 10−3

SB,3 =
[
0.024 −4.115

]
× 10−3

Table 1: Homogenized coefficients of the 3D microstructure.

For detailed development of the model we refer to (7). The model is implemented numer-
ically in our in-house developed software SfePy which is based on the finite element method,
see http://sfepy.kme.zcu.cz, http://sfepy.org

4. Numerical illustrations

In this section we give an illustrative example of a specific double porosity microstrcture and
the associated homogenized coefficients introduced above. The geometry of the representative
volume element (periodic cell) Y at the microscopic scale is depicted in Fig. 2. The RVE
consists of matrix represented by YM and two embedded channels A (red), B (blue). In Figs. 3
and 4 we show computed corrector functions π1,2

A (see (12)) in channel A and γ+,− (see (20)) in
matrix YM . The homogenized coefficients (22)-(25) of the 3D microstructure are in Table 1.

The homogenization procedure leading to model (27) is described in (7). In a forthcoming
publication we shall explain in detail numerical aspects of the multiscale modeling for the case
of multiple layers.
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