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Summary: The paper deals with development of a computational model describ-
ing oil expression from oil-containing seeds. The principles of compression in the
rotating screw pressing machine are based on interplay between the screw rotor
geometry, the related kinematics and the friction forces acting on the surfaces of
the rotor and stator of the machine. We consider a poroelastic biphasic material
of the Biot type. The deformation is described using a combination of the spatial
and material formulations. Within one time increment step, the physical fields in-
volved in the problem are analyzed using the Lagrangian configuration; in order
to compute the next time-increment, this configuration is updated using the upwind
numerical scheme. Such a treatment requires a projection of the data between two
non-matching FE meshes. On the rotor/stator surfaces the compressed material
is subject to the Coulomb friction conditions, which make each incremental sub-
problem strongly non-linear. For numerical solution of this problem we employ
frictional multipliers and we adopt the semi-smooth Newton method. The model is
already implemented in our in-house developed code SfePy.

1. Introduction

In this paper we introduce a computational time-incremental scheme which is being developed
for its application in modeling compression of fluid saturated porous medium (FSPM) in a duct
with taking into account the Coulomb friction conditions on walls of the duct. Such modeling
is motivated by the technology of oil expression from oil-containing seeds which is based on
propelling the material through a compression chamber of the screw compressor, see Fig. 1.
This chamber is formed by the space between the rotor (a conical screw) and the cylindrical
stator whose surface is perforated to allow for leakage of the interstitial oil expressed from the
seeds.

The problem under consideration is featured by the following major difficulties:

• two-phasic material of the solid nature and interstitial fluid flow in the pores;

• plastic deformation and significant change of the permeability of the compressed material;
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Figure 1: Boundary segments of the duct.

• continuous flow of the material in the duct, i.e. flow of solid deforming skeleton with
superimposed diffusion of the interstitial fluid;

• friction between the material and the duct walls – this phenomenon is crucial to describe
the driving forces of the material transport in the duct and to simulate genuinely the
compression process.

In the present paper we shall not consider the plastic deformation. Here the main focus is on:

• describing the material flow using an incremental formulation which is based on combin-
ing the Lagrangian and Eulerian description,

• including the slip/stick conditions on the duct walls.

2. Problem description

In Fig. 1 we display the geometry of the duct bounded by four types of surfaces. The duct is
represented by domain Ω ⊂ R3 with boundary ∂Ω decomposed, as follows (up to junction lines
with zero surface measure):

∂Ω = ΓS ∪ ΓR ∪ Γin ∪ Γout , (1)

where ΓS is the stator part of the duct, ΓR is the “rotor” part of the duct, Γin and Γout are the
input and output surfaces of the duct, respectively. Since the duct presents the space on the rotor
shaft of the compression machine, the reference configuration is rotating with the angular speed
of the rotor. The material in the duct rotates with the same revolutions whereby the material
particles are translated between the input and output surfaces while being compressed.

2.1. Linear model of the FSPM – Biot model

We assume quasi-static loading of the FSPM occupying domain Ω ⊂ R3. Within a small
deformation increment during time step τ the FSPM is assumed to obey the Biot type model (cf.
(Rohan et al2008)) with prestressed initial state characterizing the reference configuration. The
displacement increment u w.r.t. reference configuration and interstitial fluid pressure increase



p − p0 satisfy at any time level t + τ the force equilibrium and mass conservation equations
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where K,M, µ are elastic constants, b is the Biot poroelastic coefficient, κ the hydraulic per-
meability, eij(u) the linear strain, Sij(F 0, p0) is the total stress at the reference configuration
Ω (further characterized “point-wise” by total deformation F 0 and pressure p0) which is being
updated after computing (u, p) at each τ -time increment.

2.2. Application of the linear model for the continuous process modelling

We are dealing with compression flow of the FSPM in duct Ω. In contrast with Newtonian
fluids, where the stress depends on the actual pressure and velocity fields, in our case the state
of FSPM at a given material point depends on the history of deformation. Therefore we propose
to use a combination of the Lagrangian and Eulerian formulations. The idea of modeling the
continuous flow is based on constructing a sequence (in time) of updated configurations {C(t)}t
such that C(t+ τ) = Πτ ◦ C(t). The map Πτ is constructed as follows.

1. given reference configuration at t, C(t) = {Ω0, S0(t), F 0(t)}, where Ω0 is the reference
(to be updated afterwards) domain, S0 is the initial second Piola-Kirchhoff (2PK) stress
and F 0 is the deformation.

2. In order to compute Sτ , the 2PK stress (related still to Ω0) and the deformation “incre-
ment” f τij = ∂ui/∂Xj , where X ∈ Ω0 and u = u(τ,X) the relative displacement w.r.t.
Ω0 during time increment τ , one uses the Biot linearized model (2), where the effective
stress related to C(t) is

Sτij = S0
ij + Cijklekl(u(τ))− bij(p(t+ τ)− p(t)) , (3)

whereCijkl is the tangent stiffness tensor depending onK and µ, bij is the Biot poroelastic
tensor (both Cijkl and bij possibly dependent on deformation Fij(t)) and S0

ij is given by
the previous time level computation, see (8) below.

3. The boundary conditions are prescribed on the input boundary Γin, on the output part
Γout and on the walls in the duct ΓS ∪ ΓR. We shall list the particular types of boundary
conditions prescribed on these boundary segments.

• input: Dirichlet conditions on Γin w.r.t. u (given velocity ū/τ ), zero-Neumann
conditions w.r.t. p (no flow of the interstitial fluid),

u = ū/τ on Γin ,

n · w = −niκij∂jp = 0 on Γin ,
(4)



• output: Neumann conditions w.r.t. displacement u (zero stress σij projected to the
normal), Dirichlet conditions w.r.t p (zero pressure)

njσij = niσ1 = 0 on Γout ,

p = p1 = 0 on Γout ,
(5)

• walls: the Coulomb friction condition is considered there, which governs the tan-
gential material velocity and the tangential traction forces using the “stick/slip”, as
described in detail in Section 3.; for pressure the Neumann or Newton conditions are
considered: non-penetration of the solid skeleton, fluid can penetrate on ΓS only:

n · w = −niκij∂jp = 0 on ΓR ,

n · u = 0 , on ΓR ,
(6)

drainage through sieve of the stator part

n · w = −niκij∂jp = κp on ΓS ,

n · u = 0 , on ΓS ,
(7)

4. Stress and deformation updating procedure. Given C(t), the reference configuration,
and relative displacements ui(τ,X) and total interstitial pressure p(t+ τ) provided by the
linearized model, we compute:

deformation Fij(t+ τ,X) = fik(τ)Fkj(t) ,

updated Cauchy stress: σij(t+ τ, x) = det(f)−1fikSklfjl ,

where xi = Xi + ui(τ) ,

(8)

and Skl(t+ τ,X) is given by (3).

5. Updated configuration C(t+ τ):

Ω(t+ τ) := Ω(t) + {u(τ,X)} , X ∈ Ω(t)

S0(x) := σ(t+ τ, x) , x ∈ Ω(t+ τ) ∩ Ω0 ,

F 0(x) := Fij(t+ τ,X) .

(9)

In the input sector Ωin = {y ∈ Ω0| y = X + τ ′u̇(X) , X ∈ Γin, 0 < τ ′ < τ} the stress
and deformation must be defined. There are several possible ways how to proceed, we
use one of the simplest ones: we consider zero initial stress and deformation in Ωin

• on Γin – the same conditions are considered, as for the “τ -increment” problem in
whole Ω0.

• on Γin +τ{u̇}Γin
(shifted input) – trace of the total Cauchy stress and pressure (fluid)

from Ω(t+ τ), as computed when solving the “τ -increment” problem.

• on walls – the same conditions as for the “τ -increment” problem in whole Ω0.

This method is motivated by the steady state solution.



3. Coulomb friction conditions

Let us consider a general situation, when the sliding/sticking conditions are prescribed on Γc ⊂
∂Ω ⊂ R3; so in the problem treated in this paper Γc = ΓS ∪ ΓR. We consider the contact
pressure (negative stress, scalar) σn ≥ 0 which depends on the state variables of the continuum
(it can be approximated using the “given stress” computed in configuration C(t)). The following
friction conditions must be satisfied a.e. on Γc:

|τ | − fcσn ≤ 0 friction cone
−λ ≤ 0 “sliding switch”

λ(|τ | − fcσn) = 0 complementarity
ut − uc + λτ = 0 slip-drag co-linearity

ut · n = 0 contact / no penetration

, (10)

where τ is the friction traction, λ is the friction multiplier, fc is the friction coefficient which
may depend on the state variables (locally at Γc), uc/τ is the convection velocity on Γc and
ut is the displacement vector tangent to Γc (n is the normal vector in the last condition). The
convection velocity is the velocity of Γc w.r.t. the reference configuration. In our application
characterized by the boundary decomposition (1), uc = 0 on ∂Ω \ ΓS , while on ΓS the rotation
of the reference configuration (associated with the rotor of the compression machine) gives
uc = τRω × n, where R is the radius of the rotor, ω is the angular velocity vector and n is the
unit normal vector.

u displacements column vector
p fluid pressure column vector
A stiffness matrix (sym. pos. def.)
K permeability matrix (sym. pos. def.)
Q matrix associated with the poroelasticity coefficients
M fluid compressibility matrix
B slip-stress projection matrix
C stress projection matrix

Table 1: Matrix notation employed in (11).

Matrix formulation of the discretized time increment problem. The FE discretized prob-
lem involving equilibrium and mass conservation equations (2) and friction conditions (10) at-
tains the form of a non-linear system of algebraic equations. At each time step we find u ∈ Rn,
p ∈ Rp and λ,g ∈ Rm such that (see Tab. 1 for notation)

Au−QTp− B̄Tg = f ,

Qu + (τK + M)p = 0 ,

B(ū− ūc) + ΛCg = 0 ,

max{D̂ĝ + fcq̂ | − λ} = 0 ,

(11)

where q̂ := (Âu−Q̂Tp− f̂) represents the normal-projected traction forces on Γc (computed as
the equilibrium residuum in the FE-discretized form) and ūc are the convection displacements
involved in (10)4. It is worth noting that q̂ ≤ 0 is assumed for the physical relevance (otherwise



Figure 2: Illustration of the oil expression simulation. The computational domain Ω presents
a segment of the screw machine. Above: relative displacements u (left) and reconstructed
streamlines (right). Bottom: oil pressure distribution.

unilateral contact condition would have to be treated). To obtain numerical solutions of (11) we
use the semismooth Newton method, cf. (Rohan and Whiteman 2000), the model reported in
this paper was implemented in our in-house developed FEM code SfePy, (Cimrman et al2010).

In this paper we proposed a numerical scheme for simulation of flow of the fluid saturated
porous material in a duct with slip/stick conditions on the walls. Numerical results and details
related to the model application in simulating the oil expression in the screw compression ma-
chine will be discussed in a forthcoming publication. In figure 2 we introduce just an illustration
of the oil expression process simulated with simplified friction slip conditions.
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