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Summary: The paper discusses a mathematical model of the isotonic smooth mus-
cle contraction considering the influence of the excitation processes on the sar-
colemma and inside the muscle cell.
The discussed model is based on the approach published in Rosenberg and Svo-
bodová (2010) where the muscle fibre model containing the term corresponding
to the state of ATP hydrolysis was proposed. ATP hydrolysis is the main source of
muscle energy. This term is considered in the study to be proportional to the in-
tracellular Ca2+ concentration, its sigmoidal function respectively. A lot of models
of the intracellular Ca2+ concentration time evolution have been published. The
model introduced in Keener and Sneyd (1998) was chosen.
The model has the form of the dynamical system with 6 DOFs. Its basic dynamical
analysis was done. The results from the numerical simulation are consistant with
the published experimental results. The periodic solution of the model corresponds
in some specific cases to the myogenic vascular response known in medicin.
The advantage of the discussed approach is the natural integration of the active and
passive components of the muscle tissue into the model. The model facilitates also
the integration of the other sophicticated muscle cell models.

1. Introduction

Many tissues of human and animal organs contain smooth muscles (SMs). Important differ-
ences exist between the basic types of muscles and smooth muscles in different organs. Nev-
ertheless, the own biological motor - the actin-myosin sliding mechanism actuated by ATP
hydrolysis - is same for all muscle types (smooth, straited and cardiac).

• The regulation of the SM contraction occurs due to the calcium-regulated phosphorylation
of myosin rather than the calcium-activated troponin system by the cardiac and straited
muscle. The main control parameter is the concentration of the intracellular Ca2+.

• Calcium ionts bind calmodulin. This complex binds myosin light chain kinase (MLCK)
and forms an enzyme Ca-calmodulin-MLCK-complex. The active enzyme phosphory-
lates myosin light chain of each myosin head requiring one molecule of ATP.
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• Myosin light chain phosphatase (phosphatase C) is an enzyme that removes a phosphate
group from the myosin light chain by active MLCK.

• This phosphate group activates myosin to create the cross-bridges.

• The fast cross-bridges cycling requires further ATP. ATP hydrolysis causes the stractural
changes of myosin part and leads to the cross-bridge detachment. The ATPase activity
depends on the MLCK-Phosphatase C ratio.

• ATP activity decreases with the MLCK decrease - myosin dephosphorylation - and the
cross-bridge release is more difficult. The attached dephosphorylayted cross-bridges lead
to the development of the latch state.

Remark: ATP is needed twice during the SM contraction - for myosin phosphorylation and
croos-bridge cycling.

The main control parameter of the relative actin-myosin movement is theCa2+ concentration
in cytoplasm. The process of the Ca2+ influx and outflux in and out of the muscle cell is in
generall following (see e.g. Keener and Sneyd (1998)).

• Ca2+ inflow from the extracellular medium through

– voltage-controlled L-type channels - depolarization of the membrane,

– receptor-operated channels - binding of the external ligand,

– second-messenger-operated channels - binding of the cellular second messenger,

– mechanically operated channels - mechanical stimulation.

It should be mentioned that other membrane channels not described here exist.

• Ca2+ release from the internal stores (endoplasmic reticulum (ER) or sarcoplasmic retic-
ulum (SR)) regulated by two channels (receptors)

– ryanodine receptor - calcium-induced calcium release from SR,

– inositol/triphosphate (IP3) receptor “Binding of an extracellular agonist to the re-
ceptor in the surface membrane causes the diffusion of IP3 through the membrane.
IP3 binds to and activates the IP3 receptors on the ER. The calcium channel opens.”,

– Ca2+ outflow driven by Ca2+ pumping out of a cell “The energy stored in ATP or
also the energy ofNa+ electromechanical gradient is used. TheCa2+ concentration
in the cytoplasm is lower than the extracellular concentration.”,

– Ca2+ outflow driven by pumping into the internal membrane-bound compartments
(e.g. ER or SR) “The energy stored in ATP or also the energy of Na+ electrome-
chanical gradient is used. The Ca2+ concentration in the cytoplasm is lower than
the concentration inside the internal compartments.”.



Remark: All these ways of Ca2+ influx and outflux on the outer cell and internal membranes
can create the oscillators - the membrane and intracellular oscillators - which can interface (see
Parthimos et al. (1999)). Depending on the type of SM cell the key element for its activation
is either the membrane depolarization or the periodic release of Ca2+ from the internal stores.
The mathematical model of the mentioned processes is shown later.

2. Mechanochemical coupling

Till now the electro-chemical processes only leading to the own SM cell contraction process
have been discussed. The own contraction of SM cell is connected also with the mechanical
response of other passive tissue components. A lot of diverse models describing the pathway
from the processes on the cell level into the macro-effects - like total force in the isometric case
or the muscle contraction in the isotonic case - were published.

The growth and remodelling theory of DiCarlo and Quiligotti (2002) together with the laws
of irreversible thermodynamics with internal variables (IVT) were used in Rosenberg and Svo-
bodová (2010) to suggest a model of mechanochemical coupling during the SM fibre contrac-
tion. Short overview only and the results of the approach are mentioned as follows.

The starting point is an initial configuration B0 that growths and remodels, i.e. changes
its volume (growth), form and anisotropy (geometrical remodelling) or material parameters
(material remodelling). This process is expressed in DiCarlo and Quiligotti (2002) by the tensor
P (further growth tensor) that relates the initial configuration to the relaxed one Br with zero
inner stress. To the real configuration Bt, where the inner stress invoked by growth, geometrical
remodelling and external loading can exist, it is related by the deformation tensor F.

The small deformations only are taken into account, the Lagrangian and Eulerian approach
is not distinguished. The deformation gradient between configurations B0 and Bt can be written
as

∇p = FP. (1)

Let the velocity of continuum v = ∇ṗ (p is the placement - the mapping between initial and
current configurations) and the velocity of growth V = ṖP−1 be considered.

Further the isothermic case, the existence of chemical reactions and the mass flux are as-
sumed. Taking into account the IVT approach, see Lebon et al. (2008), comparing it with
the approach of DiCarlo and Quiligotti (2002), renaming the state and internal variables a =
[F,P], ξ ≈ K, the first law of thermodynamics has the form

ḟ = τe · ∇v + Ce ·V −A · K̇−Achem · Ẏ , (2)

where τe is the Cauchy stress tensor, Ce is the generalised external remodelling force. A is the
affinity (or configurational or Eshelby force) conjugate to K and Achem · Ẏ is the product of
the chemical reaction affinity with its rate.

It is supposed that the free energy related to the relaxed configuration fr depends on F,K,Y
only. In the initial configuration is then

f(F,P,K,Y ) = Jfr(F,K,Y ), (3)



where J = detP. After certain steps described in Rosenberg and Svobodová (2010) is obtained
the first set of constitutive equations

σe = J
∂fr
∂F

; A = −J ∂fr
∂K

; Achem = −J ∂fr
∂Y

; JfrI = σeF + Ce, (4)

where σe = τeP
T is the first Piola-Kirchhoff stress tensor (elastic).

The second law of thermodynamics has the form

ḟ ≤ τ · ∇v + C ·V − J · ∇(∆µ̄), (5)

where J represents the mass flux and ∆µ̄ is the difference of the chemical potentials. Inserting
the first set of constitutive equations (4), considering ḟ = J(∂fr

∂F
·Ḟ+ ∂fr

∂K
·K̇+ ∂fr

∂Y
·Ẏ +frI ·V),

the second law of thermodynamics is obtained after certain steps as follows

(σ − σe) · Ḟ + (C− JfrI + σF) ·V + Achem · Ẏ + A · K̇− J · ∇(∆µ̄) ≥ 0. (6)

The term in brackets can be written in the form

(C− JfrI + σF) = C− E where E = JfrI− σF (7)

and (σ − σe) = σdis represents the dissipation part of the stress tensor.
The second set of constitutive equations - the evolution equations - can be obtained from (6)

according to the linear phenomenological relations using the Onsager’s coefficients Lαβ which
should satisfy the corresponding inequalities,

σdis = LσF Ḟ + LσE(C− E) + LσAAchem + LσAA− Lσµ∇(∆µ̄),

V = LV F Ḟ + LV E(C− E) + LVAAchem + LV AA− LV µ∇(∆µ̄),

Ẏ = LY F Ḟ + LY E(C− E) + LYAAchem + LY AA− LY µ∇(∆µ̄), (8)
K̇ = LKF Ḟ + LKE(C− E) + LKAAchem + LKAA− LKµ∇(∆µ̄),

J = LJF Ḟ + LJE(C− E) + LJAAchem + LJAA− LJµ∇(∆µ̄).

These linear dependencies are only one simple possibility, nevertheless it offers a lot of diverse
applications. Except the discussed possibility the others exist.

3. One dimensional model of a smooth muscle fibre - isotonic contraction

The structure of a smooth muscle fibre is very complicated comparing with a straited muscle
fibre. Consequently one dimensional (1D) model only of the smooth muscle fibre is studied
based on the previous equations. The model allows to test basic properties of the smooth muscle.
The first validation of the model can be done according to the experimental results.

A lot of different mathematical models of theCa2+ in/ and outflow exist. The precise models
are described e.g. in Yang et al. (2003a), Yang et al. (2003b), Parthimos et al. (1999) and
Parthimos et al. (2007). The relatively simple ryanodine receptor based model published in
Keener and Sneyd (1998) is used at first as follows



dc

dt
= vc[(kfx2 + g1)(cs − c)−

p1c
2

p2
2 + c2

] + g2(ce − c)−
g1c

2

g2
2 + c2

+ J(t),

dcs
dt

= −(kfx2 + g1)(cs − c) +
p1c

2

p2
2 + c2

,

dy

dt
= k2(

k1c

k−1 + k1c
)(1− y)− k−2y, (9)

where

x2 = (
k1c

k−1 + k1c
)(1− y).

Following conditions are assumed

• Ca2+ leaks into the cell from the cell outside at the rate g2(ce−c), where ce is the external
Ca2+ concentration, c is the cytoplasmic Ca2+ concentration and g2 is a constant.

• Ca2+ leaks into the cell from the SR at the rate g1(cs − c), where cs is the Ca2+ concen-
tration in the SR.

• Ca2+ is pumped out of the cell at the rate g1c
2/(c2 + g2

2).

• Ca2+ is pumped from the cytoplasm into the SR at the rate p1c
2/(c2 + p2

2).

• The rate of Ca2+ release from the SR through ryanodine receptors is kfx2(cs − c).

The parameter dimensiones are as follows

[k1] = µ M−1s−1, [k−1] = [k2] = [k−2] = [kf ] = [g1] = [g2] = s−1,

[p1] = [q1] = µ M s−1, [ce] = [q2] = µ M, [vc] = 1.

J(t) is a flux that expresses the Ca2+ influx resulting from the opening of the voltage-gated
channels in the sarcolemma. It is a square pulse lasting in the cardiac cell for the period 240ms
and the amplitude determined the size of the initial Ca2+ stimulus.

Let the following dimensionless variables be introduced into (9)

τ = t k−1, u = c/ce, v = cs/ce, (10)

the equation (9) has the form

du

dτ
= [α

u

β + u
(1− y) + 1]γ(v − u)− vcu

2

δ + ηu2
+ ϑ(1− u)− u2

κ+ λu2
+ µ(t),

dv

dτ
= − 1

vc
[α

u

β + u
(1− y) + 1]γ(v − u) +

u2

δ + ηu2
, (11)

dy

dτ
= ν

u

β + u
(1− y)− ψy,

where



α =
kf
g1

, β =
k−1

k1ce
, γ =

vcg1

k−1

, δ =
p2

2k−1

p1ce
, η =

cek−1

p1

,

ϑ =
g2

k−1

, κ =
q2

2k−1

q1ce
, λ =

cek−1

q1
, µ =

J(t)

cek−1

, ν =
k2

k−1

, ψ =
k−2

k−1

. (12)

Let now the muscle fibre be modelled as a 1D continuum of the initial length l0. Its actual
length after growth, remodelling and loading let be l. The relaxed length - after growth and
remodelling - is then lr. For the corresponding deformation gradients P = γe ⊗ e,F = ϕe ⊗
e,∇p = εe⊗ e, where e is the unit vector in the muscle fibre direction, the following relations
can be written

γ =
lr
l0
, ϕ =

l

lr
, ε =

l

l0
. (13)

For small deformations (J = 1), free energy has the simple form. It contains the term AchemY
according to the relation (4)

f = fr =
1

2
k(ϕ− 1)2 +AchemY. (14)

Fung suggested another form of free energy for the living tissues

f =
k

λ
(e

λ
2
(ϕ−1)2 − 1) +AchemY, (15)

where for λ → 0 the same result as in (14) is obtained. The equations (4), (8) have then the
following form using the diagonal terms only for the uncoupled case

σe =
∂f

∂ϕ
, (16)

σdis = hϕ̇, (17)

C − E = gγ̇γ−1, E = f − ϕσ, (18)

Ẏ = LAchem, (19)

k̇ = −m∂f

∂k
. (20)

Further in this study the new simpler notation of the Onsager’s coefficients is introduced as
follows h ≡ LσF , g ≡ LV E, L ≡ LYA,m ≡ LKA and k ∼ K represents the stiffness as an
internal variable. The equations (16)-(20) can be expressed after certain steps in the form



k̇ = m[r − 1

2
(
l

lr
− 1)2],

l̇r =
lr
g

[
l

lr
τ − 1

2
k(
l

lr
− 1)2 − C], (21)

l̇ =
lr
h
{τ − k(

l

lr
− 1) + h

l

glr
[
l

lr
τ − 1

2
k(
l

lr
− 1)2 − C]}.

The equations (21) define the dynamical system expressed on the state space {lr, l, k}. The
parameter r in the first equation of (21) expresses the influence of the diffusion processes on the
change of k (−LKµ∇(∆µ) = r). Its importance for the whole system stability can be shown,
see Rosenberg and Hynčı́k (2008).

If the dimensionless variables are introduced

k′ = k

√
|m|
g
, l′r =

lr
l0
, t′ =

t√
g|m|

,

x =
l′

l′r
, y = l′r, z = k′,

l

l0
= x · y, (22)

the following system of equations is obtained

ẋ =
g

h
[τ ′ − z(x− 1)],

ẏ = y[xτ ′ − 1

2
z(x− 1)2 + C ′], (23)

ż = sgnm[r − 1

2
z(x− 1)2],

where

C ′ = (C −AchemY )
√

(|m|/g), (24)

AchemY
√

(|m|/g) = p
c2

c2 + x0
2
, (25)

p = p0e
s( l
l0
− l
l0
|opt)2 , (26)

C
√

(|m|/g) = Cte
q( l
l0
− l
l0
|opt)2 . (27)

The notation l
l0
|opt is the optimal sarcomere prolongation with the maximal number of the

attached cross-bridges. p0, x0, s, q, Ct are the control parameters.
The whole dynamical system representing the isotonic contraction of the smooth muscle

fibre consists from the equations (9) and (21) or in the dimensionless form (11) and (23). The
equations express the dynamical system with 6 DOFs. The stretch dependent channels can be
taken into account and expressed by the parameter g2 dependent on the stretch of the SM cell
as follows



g2 →
2g2

1 + e−coup y (x−xb)
, (28)

where coup is the parameter describing the influence of the stretch on the flux of Ca2+. If
coup = 0 the uncoupled case occurs, as was shown previously. xb is the value for which the
influence of the stretch on the flux of Ca2+ is zero.

4. Dynamical analysis

The dynamical properties of the system (23) were studied in Rosenberg and Hynčı́k (2008). In
this paper there is paid the attention to the evolution of the Ca2+ concentration. The equations
(11) define the nonlinear dynamical system. The matrix [aij] of the range 3 × 3 is constracted
as the partial derivative of the equations (11) right sides according to the variables {u, v, y} to
analyse the dynamical system properties.

a11 =
αγ

β + u
(1− y)[

β(v − u)

β + u
− u]− γ − 2δvcu

(δ + γu2)2
− ϑ− 2κu

(κ+ λu2)2
,

a12 = [α
u

β + u
(1− y) + 1]γ,

a13 = −αγ(v − u)
u

β + u
,

a21 = − 1

vc
{ αγ

β + u
(1− y)[

β(v − u)

β + u
− u]− γ − 2δvcu

(δ + γu2)2
}, (29)

a22 = − γ
vc

[α
u

β + u
(1− y) + 1],

a23 =
αγ

vc
(v − u)

u

β + u
, a31 = ν

β

(β + u)2
(1− y),

a32 = 0, a33 = −ν u

β + u
− ψ.

The results from the numerical simulation are shown as follows.

Figure 1: The dimensionless parameters {u, v} representing the Ca2+ concentration for ϑ =
0.1, where α = 200, β = 0.338, γ = 0.01, δ = 0.00007, η = 0.01, ϑ = 0.1, κ = 0.0017, λ =
0.6, µ = 0, ν = 0.105, vc = 0.185, ψ = 0.11.



The parameter ϑ represents the flux of Ca2+ through the sarcolemma. If the parameter
ϑ changes the eigenvalues {d1, d2, d3} of the dynamical system change too. The situation is
shown on fig. 2-4. The eigenvalue bifurcation dependence on the parameter ϑ can be observed.

Figure 2: The dependence of the eigenvalues {d1, d2, d3} - their real and imaginary parts - on
the parameter ϑ. The eigenvalue d3 is small and negative, e.g. for ϑ = 1 d1 = −57.82, d2 =
−0.095, d3 = −0.127, for ϑ = 2 d1 = 11.205, d2 = 0.905, d3 = −0.128.

The interesting regions are shown on fig. 3 and 4 as follows

Figure 3: The dependence of the eigenvalues {d1, d2, d3} on the parameter ϑ.

The bifurcation for θ = 1.595 is the Hopf’s one (see fig. 3). The fix point is non-stable for
ϑ > 1.595, the periodical attractor apears.



Figure 4: The dependence of the eigenvalues {d1, d2, d3} on the parameter ϑ.

The periodical change of the Ca2+ concentration can appear for the large value of ϑ see fig.
5 where the response of the muscle fibre is shown. The input data for the following figures are:
kf = 80, vc = 0.185, k1 = 15, k−1 = 7.6, g1 = 0.4, p1 = 1038, p2 = 0.12, ce = 1.5, q1 =
19, q2 = 0.08, J = 0.0, k2 = 0.8, k−2 = 0.84, x0 = 1, p0 = 0.1859, s = 0, q = 0, τ =
0.2, opt = 1, Ct = 0.12,m = 1, r = 0.02, coup = 0, xb = 1, tfinal = 100, c0 = 0.00292, cs0 =
0.00685, y0 = 0.00542875.

Figure 5: Left - the time evolution of the muscle fibre deformation l/l0. Right - the relation
between c the cytoplasmicCa2+ concentration and cs theCa2+ concentration in SR. The results
were obtained for g2 = 15, ϑ = 1.97.

The chaotical behaviour (see fig. 6) can be observed in between the stationary state (see
fig.1) and the periodical oscillation in the neibourghood of the bifurcation point (see fig. 5).

The behavior of the muscle fibre discussed in the paper was experimentally proved in Parthi-
mos et al. (1999) on the isolated rabbit ear resistance arteries.



Figure 6: Left - the time evolution of the cytoplasmic Ca2+ concentration. Right - the relation
between c the cytoplasmicCa2+ concentration and cs theCa2+ concentration in SR. The results
were obtained for g2 = 12, ϑ = 1.578.

5. Conclusion

The one possible way how to introduce more sophisticated models describing the phosphoryla-
tion of the myosin into the basic mathematical model of the isotonic smooth muscle contraction,
see e.g. Hai and Murphy (1998), was shown in the paper. The approach increases both the num-
ber of DOFs and allows to introduce other known models describing the stimulation of muscle
cells influenced by the intracellular calcium concentration. Another possibility is to change the
free energy form e.g. taking into account diverse constitutive relations for the passive compo-
nents of the muscle. The great advantage of the discussed approach seems to be its flexibility
allowing to tailor the model to the concrete type of the smooth muscle.

The crucial problem is to identify the large number of the parameters from the experimental
data.

The challenging problem is the analysis of the dynamical system properties like the equilib-
rium points corresponding to the steady state or the bifurcations which can lead to the either
periodic or chaotic contractions. Both types of the behavior were experimentally approved on
the living tissues.
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